RTTOV Coefficient File Downloads

RTTOV v14 Coefficient File Downloads

Important notes:

  • The optical depth (rtcoef) coefficient files available on this web page are recommended for use with RTTOV v14. All other v13-compatible rtcoef files are deprecated and will no longer be supported or generated after RTTOV v15 is released (no earlier than Q1 2027).
  • The NWP SAF only endorses and supports the use of coefficients that are generated by the NWP SAF team. We do not guarantee the quality of any coefficient files obtained from any source other than this website or directly from the NWP SAF team.
  • Please submit requests for new coefficients to the help desk. New coefficients are provided on a best efforts basis given resource availability. Requests for sensors with immediate application in NWP are given highest priority, followed by those with a broad user interest for research purposes. Lowest priority is given to those which are very specific or experimental, and to any requests which require that we do not share the resulting coefficients on the website.
  • The following sensor coefficient files were generated with Copernicus funding:
    – NOAA 5-14 MSU, DMSP 8-15 SSM/I, Nimbus 7 SMMR, DMSP 11-15 SSM/T-2, DMSP 16-19 SSMI/S, Nimbus 5-6 ESMR, Nimbus-5 NEMS, Nimbus-6 SCAMS, DMSP 7-15 SSM/T
    – Meteor 25 SI, Nimbus-4 IRIS, DMSP 1-4 SSH

The rttov_coef_download.sh script supplied in the RTTOV package in the rtcoef_rttov14/ directory can be used for downloading coefficient files in bulk or you can download individual files from the links below. You only need to download coefficients for the simulations you wish to carry out.

Update history for this page.

Additional information about coefficient files.

Spectral response functions and passbands used when generating the latest optical depth coefficient files.

Plots/tables comparing RTTOV with line-by-line (LBL) data for each optical depth coefficient file.


RTTOV v13 compatibility

Optical depth (rtcoef) files:

  • RTTOV v14 can be used with all ASCII RTTOV v13-compatible optical depth (rtcoef) coefficient files.
  • The binary file format has changed so binary files must be regenerated for v14.
  • RTTOV v14 no longer supports HDF5 coefficients, so netCDF files must be downloaded via the links below instead.
  • Important note: the coefficient files available on this web page are recommended for use with RTTOV v14. All other v13-compatible files are deprecated and will no longer be supported or generated after RTTOV v15 is released (no earlier than Q1 2027).
  • All RTTOV v13 coefficients are available on the RTTOV v13 coefficients download page.

Hydrometeor/aerosol optical property files: RTTOV v14 files are available below. These cannot be used with RTTOV v13, and the RTTOV v13 optical property files cannot be used in v14.

MFASIS-NN coefficient files: new v14 files have been trained using RTTOV v14 and are available below. These cannot be used with RTTOV v13, and RTTOV v13 MFASIS-NN coefficient files cannot be used in v14.

PC-RTTOV coefficient files: new files have been trained for RTTOV v14 and are available below. These cannot be used with RTTOV v13, and RTTOV v13 PC coefficient files cannot be used in v14.


Hyperspectral UV/VIS/IR coefficients and optical properties

Optical depth coefs and cloud/aerosol optical properties

General information on hi-res IR sounder optical depth coefficient files:

  • Based on LBLRTM v12.8 line-by-line model
  • Based on v13 or v9 predictors
  • Based on 101 levels
  • Coefficients with variable O3+CO2 (v13pred) available for all sensors (UV-only sensors may be O3-only)
  • Coefficients with all variable trace gases (v13pred/v9pred) available for selected sensors (others on request)
  • Solar-enabled for channels below 5 microns
  • Coefficients for GEO sensors support the full range of zenith angles covered by RTTOV (up to ~85 degrees)
  • No Planck-weighted channels

Downloads

  • All files are linked in the table below.
  • v13 predictors are recommended, but some users have found that v9 predictor coefficients give better results so these remain available.
  • Due to the large size of the hi-res sounder files netCDF is the preferred format for them. Please contact the NWP SAF Helpdesk to request an ASCII version of a file if required. See here for notes on converting between coefficient file formats (ASCII, binary, netCDF) and extracting subsets of channels from coefficient files.
  • The same hydrotable/aertable optical property files are used with all optical depth coefficient files for a given sensor.
  • The fast-only hydrotable/aertable files are recommended if you only want to use Chou-scaling or delta-Eddington for IR scattering simulations (no DOM, no solar) as the files are much smaller than the full ones.
  • Download to folders as follows:
    • v13 predictor 101L rtcoef files – download to rtcoef_rttov14/rttov13pred101L/
    • v9 predictor 101L rtcoef files – download to rtcoef_rttov14/rttov9pred101L/
    • All hydrometeor rttov_hydrotable files – download to rtcoef_rttov14/hydrotable_visir/
    • All aerosol rttov_aertable files – download to rtcoef_rttov14/aertable_visir/
SensorLevelsPredictors
version
Trace gasesNLTE?FilenameDate of file creationAssociated hydrotable
filename
Associated OPAC aertable
filename
Associated CAMS aertable
filename
Associated ICON aertable
filename
AIRS10113O3, CO2Yrtcoef_eos_2_airs_o3co2.nc11/07/2024rttov_hydrotable_eos_2_airs.nc
rttov_hydrotable_eos_2_airs_fast-only.nc
rttov_aertable_eos_2_airs_opac.nc
rttov_aertable_eos_2_airs_opac_fast-only.nc
rttov_aertable_eos_2_airs_cams.nc
rttov_aertable_eos_2_airs_cams_fast-only.nc
rttov_aertable_eos_2_airs_icon.nc
rttov_aertable_eos_2_airs_icon_fast-only.nc
AIRS10113O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_eos_2_airs_7gas.nc11/07/2024As aboveAs aboveAs aboveAs above
AIRS1019O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_eos_2_airs_7gas.nc11/07/2024As aboveAs aboveAs aboveAs above
AIRS L1C10113O3, CO2Nrtcoef_eos_2_airs_l1c_o3co2.nc23/04/2024rttov_hydrotable_eos_2_airs_l1c.nc
rttov_hydrotable_eos_2_airs_l1c_fast-only.nc
rttov_aertable_eos_2_airs_l1c_opac.nc
rttov_aertable_eos_2_airs_l1c_opac_fast-only.nc
rttov_aertable_eos_2_airs_l1c_cams.nc
rttov_aertable_eos_2_airs_l1c_cams_fast-only.nc
-
AIRS L1C10113O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_eos_2_airs_l1c_7gas.nc30/05/2024As aboveAs aboveAs above-
AIRS L1C1019O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_eos_2_airs_l1c_7gas.nc30/05/2024As aboveAs aboveAs above-
CrIS NSR10113O3, CO2Yrtcoef_jpss_0_cris_o3co2.nc27/10/2020rttov_hydrotable_jpss_0_cris.nc
rttov_hydrotable_jpss_0_cris_fast-only.nc
rttov_aertable_jpss_0_cris_opac.nc
rttov_aertable_jpss_0_cris_opac_fast-only.nc
rttov_aertable_jpss_0_cris_cams.nc
rttov_aertable_jpss_0_cris_cams_fast-only.nc
rttov_aertable_jpss_0_cris_icon.nc
rttov_aertable_jpss_0_cris_icon_fast-only.nc
CrIS NSR10113O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_jpss_0_cris_7gas.nc29/10/2020As aboveAs aboveAs aboveAs above
CrIS NSR1019O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_jpss_0_cris_7gas.nc14/09/2020As aboveAs aboveAs aboveAs above
CrIS FSR10113O3, CO2Yrtcoef_jpss_0_cris-fsr_o3co2.nc27/10/2020rttov_hydrotable_jpss_0_cris-fsr.nc
rttov_hydrotable_jpss_0_cris-fsr_fast-only.nc
rttov_aertable_jpss_0_cris-fsr_opac.nc
rttov_aertable_jpss_0_cris-fsr_opac_fast-only.nc
rttov_aertable_jpss_0_cris-fsr_cams.nc
rttov_aertable_jpss_0_cris-fsr_cams_fast-only.nc
rttov_aertable_jpss_0_cris-fsr_icon.nc
rttov_aertable_jpss_0_cris-fsr_icon_fast-only.nc
CrIS FSR10113O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_jpss_0_cris-fsr_7gas.nc29/10/2020As aboveAs aboveAs aboveAs above
CrIS FSR1019O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_jpss_0_cris-fsr_7gas.nc29/10/2020As aboveAs aboveAs aboveAs above
FORUM10113O3, CO2Nrtcoef_forum_1_forum_o3co2.nc11/03/2021rttov_hydrotable_forum_1_forum.nc
rttov_hydrotable_forum_1_forum_fast-only.nc
---
FORUM10113O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_forum_1_forum_7gas.nc11/03/2021As above---
FORUM1019O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_forum_1_forum_7gas.nc11/03/2021As above---
GIIRS***10113O3, CO2Nrtcoef_fy4_1_giirs_o3co2.nc28/10/2020rttov_hydrotable_fy4_1_giirs.nc
rttov_hydrotable_fy4_1_giirs_fast-only.nc
rttov_aertable_fy4_1_giirs_opac.nc
rttov_aertable_fy4_1_giirs_opac_fast-only.nc
rttov_aertable_fy4_1_giirs_cams.nc
rttov_aertable_fy4_1_giirs_cams_fast-only.nc
-
GIIRS***10113O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_fy4_1_giirs_7gas.nc02/11/2020As aboveAs aboveAs above-
GIIRS***1019O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_fy4_1_giirs_7gas.nc02/11/2020As aboveAs aboveAs above-
GIIRS-2***10113O3, CO2Nrtcoef_fy4_2_giirs_o3co2.nc29/11/2023rttov_hydrotable_fy4_2_giirs.nc
rttov_hydrotable_fy4_2_giirs_fast-only.nc
rttov_aertable_fy4_2_giirs_opac.nc
rttov_aertable_fy4_2_giirs_opac_fast-only.nc
rttov_aertable_fy4_2_giirs_cams.nc
rttov_aertable_fy4_2_giirs_cams_fast-only.nc
-
GIIRS-2***10113O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_fy4_2_giirs_7gas.nc29/11/2023As aboveAs aboveAs above-
GIIRS-2***1019O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_fy4_2_giirs_7gas.nc29/11/2023As aboveAs aboveAs above-
GOME-210113O3Nrtcoef_metop_3_gome2_o3.nc05/11/2021rttov_hydrotable_metop_3_gome2.ncrttov_aertable_metop_3_gome2_opac.ncrttov_aertable_metop_3_gome2_cams.nc-
HIRAS NSR10113O3, CO2Nrtcoef_fy3_4_hiras_o3co2.nc27/10/2020rttov_hydrotable_fy3_4_hiras.nc
rttov_hydrotable_fy3_4_hiras_fast-only.nc
rttov_aertable_fy3_4_hiras_opac.nc
rttov_aertable_fy3_4_hiras_opac_fast-only.nc
rttov_aertable_fy3_4_hiras_cams.nc
rttov_aertable_fy3_4_hiras_cams_fast-only.nc
-
HIRAS NSR10113O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_fy3_4_hiras_7gas.nc03/11/2020As aboveAs aboveAs above-
HIRAS NSR1019O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_fy3_4_hiras_7gas.nc03/11/2020As aboveAs aboveAs above-
HIRAS FSR10113O3, CO2Nrtcoef_fy3_4_hirasfsr_o3co2.nc28/10/2020rttov_hydrotable_fy3_4_hirasfsr.nc
rttov_hydrotable_fy3_4_hirasfsr_fast-only.nc
rttov_aertable_fy3_4_hirasfsr_opac.nc
rttov_aertable_fy3_4_hirasfsr_opac_fast-only.nc
rttov_aertable_fy3_4_hirasfsr_cams.nc
rttov_aertable_fy3_4_hirasfsr_cams_fast-only.nc
-
HIRAS FSR10113O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_fy3_4_hirasfsr_7gas.nc02/11/2020As aboveAs aboveAs above-
HIRAS FSR1019O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_fy3_4_hirasfsr_7gas.nc02/11/2020As aboveAs aboveAs above-
HIRAS-210113O3, CO2Nrtcoef_fy3_5_hiras2_o3co2.nc23/01/2023rttov_hydrotable_fy3_5_hiras2.nc
rttov_hydrotable_fy3_5_hiras2_fast-only.nc
rttov_aertable_fy3_5_hiras2_opac.nc
rttov_aertable_fy3_5_hiras2_opac_fast-only.nc
rttov_aertable_fy3_5_hiras2_cams.nc
rttov_aertable_fy3_5_hiras2_cams_fast-only.nc
-
HIRAS-210113O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_fy3_5_hiras2_7gas.nc23/01/2023As aboveAs aboveAs above-
HIRAS-21019O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_fy3_5_hiras2_7gas.nc20/01/2023As aboveAs aboveAs above-
IASI10113O3, CO2Yrtcoef_metop_2_iasi_o3co2.nc29/11/2024rttov_hydrotable_metop_2_iasi.nc
rttov_hydrotable_metop_2_iasi_fast-only.nc
rttov_aertable_metop_2_iasi_opac.nc
rttov_aertable_metop_2_iasi_opac_fast-only.nc
rttov_aertable_metop_2_iasi_cams.nc
rttov_aertable_metop_2_iasi_cams_fast-only.nc
rttov_aertable_metop_2_iasi_icon.nc
rttov_aertable_metop_2_iasi_icon_fast-only.nc
IASI10113O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_metop_2_iasi_7gas.nc29/11/2024As aboveAs aboveAs aboveAs above
IASI1019O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_metop_2_iasi_7gas.nc29/11/2024As aboveAs aboveAs aboveAs above
IASI-NG10113O3, CO2Yrtcoef_metopsg_1_iasing_o3co2.nc04/10/2024rttov_hydrotable_metopsg_1_iasing.nc
rttov_hydrotable_metopsg_1_iasing_fast-only.nc
rttov_aertable_metopsg_1_iasing_opac.nc
rttov_aertable_metopsg_1_iasing_opac_fast-only.nc
rttov_aertable_metopsg_1_iasing_cams.nc
rttov_aertable_metopsg_1_iasing_cams_fast-only.nc
rttov_aertable_metopsg_1_iasing_icon.nc
rttov_aertable_metopsg_1_iasing_icon_fast-only.nc
IASI-NG10113O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_metopsg_1_iasing_7gas.nc07/10/2024As aboveAs aboveAs aboveAs above
IASI-NG1019O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_metopsg_1_iasing_7gas.nc04/10/2024As aboveAs aboveAs aboveAs above
IKFS210113O3, CO2Nrtcoef_meteor-m_2_ikfs2_o3co2.nc11/03/2021----
IKFS210113O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_meteor-m_2_ikfs2_7gas.nc11/03/2021----
IKFS21019O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_meteor-m_2_ikfs2_7gas.nc11/03/2021----
IRIS10113O3, CO2Nrtcoef_nimbus_4_iris_o3co2.nc29/10/2020----
IRIS "shifted"*10113O3, CO2Nrtcoef_nimbus_4_iris-shifted_o3co2.nc29/10/2020----
IRIS "C3S"*10113O3, CO2Nrtcoef_nimbus_4_iris-c3s_o3co2.nc09/03/2021----
MTG IRS - HAOTOLA**10113O3, CO2Yrtcoef_mtg_2_irs-haotola-2mopd_o3co2.nc14/11/2024rttov_hydrotable_mtg_2_irs.nc
rttov_hydrotable_mtg_2_irs_fast-only.nc
rttov_aertable_mtg_2_irs_opac.nc
rttov_aertable_mtg_2_irs_opac_fast
-only.nc
rttov_aertable_mtg_2_irs_cams.nc
rttov_aertable_mtg_2_irs_cams_fast-only.nc
rttov_aertable_mtg_2_irs_icon.nc
rttov_aertable_mtg_2_irs_icon_fast-only.nc
MTG IRS - HAOTOLA**10113O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_mtg_2_irs-haotola-2mopd_7gas.nc14/11/2024As aboveAs aboveAs aboveAs above
MTG IRS - HAOTOLA**1019O3, CO2, N2O, 
CO, CH4, SO2
Yrtcoef_mtg_2_irs-haotola-2mopd_7gas.nc14/11/2024As aboveAs aboveAs aboveAs above
MTG IRS - lightly apodised**10113O3, CO2Nrtcoef_mtg_2_irs-atbd-2mopd_o3co2.nc22/08/2024As aboveAs aboveAs aboveAs above
MTG IRS - lightly apodised**10113O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_mtg_2_irs-atbd-2mopd_7gas.nc14/08/2024As aboveAs aboveAs aboveAs above
MTG IRS - lightly apodised**1019O3, CO2, N2O, 
CO, CH4, SO2
Nrtcoef_mtg_2_irs-atbd-2mopd_7gas.nc14/08/2024As aboveAs aboveAs aboveAs above
SI10113O3, CO2Nrtcoef_meteor_25_si_o3co2.nc28/10/2020----

Metop-B/C IASI coefficients, NOAA-20/21 CrIS coefficients: the same coefficient files for a given hyperspectral sensor (including optical depth coefficients, cloud/aerosol properties, and PC coefficient files) can be used for that sensor on all satellite platforms. Therefore the IASI coefficient files for Metop-A can be used for Metop-B/C, and the CrIS NSR and FSR files for S-NPP (JPSS-0) can be used for NOAA-20/21.

*Nimbus-4 IRIS “shifted” coefficients: nominal central wavenumbers are divided by 0.9995. This factor is mentioned in the literature (see the first paragraph under Methods on the last page).
Nimbus-4 IRIS “C3S” coefficients were generated for the Copernicus Climate Change Service: more information is given in the headers which can be displayed using the rttov_coef_info.exe tool which is compiled to the bin/ directory as part of the RTTOV build.

**MTG-IRS coefficients: these have been generated using the latest channel specification (as of summer 2024) which has different spectral resolutions in the long and short wave bands (hence “2mopd” in the filename to distinguish them from earlier files). The “HAOTOLA” files use Hamming-Apodisation-On-Top-Of-Light-Apodisation and are recommended for use with RTTOV. The “atbd” files are generated using the “light apodisation” function described in the ATBD, 16 March 2018, integral of a Gaussian centred on “gate”, reference: MTG-IRS level 1 ATBD, EUM/RSP/TEN/16/878765, V1E draft 7 June 2017. Due to this light apodisation, the errors in the RTTOV optical depth prediction scheme are larger than for other sensors, particularly in the short-wave band. For example see the this page for the LBL vs RTTOV statistics for the RTTOV v13 predictor 101L variable O3+CO2 coefficients (more information about these plots is available on the LBL/RTTOV comparison page, with links to plots for all available MTG-IRS coefficients).

***GIIRS coefficients: these are Hamming apodised (a=0.23, 0.8cm MPD) with a spectral resolution of 0.625 cm-1. They cover the range of channels supported by each instrument, but in practice the distributed data may contain fewer channels (especially for FY-4A) and after apodisation you may optionally choose to remove one or two channels at either end of each band. In that case, you may wish to extract a subset of channels using the rttov_conv_coef.exe executable (see Annex A in the user guide) so that the coefficient file includes only the channels you require. The FY-4A/B files contain the following channels (note that FY-4A contains a subset of the channels in the FY-4B file):

– FY-4A GIIRS, 1682 channels:
721 channels in LW band 680-1130cm-1
961 channels in MW band 1650-2250cm-1
– FY-4B GIIRS 1690 channels:
725 channels in LW band 678.75-1131.25 cm-1
965 channels in MW band 1648.75-2251.25 cm-1


PC-RTTOV coefficients

PC-RTTOV coefficients are available for a subset of hyperspectral IR sounders. It is important to use the same optical depth (rtcoef) coefficient file in the simulation as was used for training the PC coefficients. These are currently the 7gas v13 predictor coefficients on 101L linked in the hyperspectral IR sounder table above. For convenience they are linked again in the table below. RTTOV will not let you use incompatible rtcoef/pccoef files together.

NB Currently all PC coefficient files for RTTOV v14 are being regenerated based on the latest optical depth coefficient files.

These PC coefficients allow all optional RTTOV variable gases (except SO2), NLTE simulations, aerosol simulations using the OPAC optical properties, and hydrometeor (cloud) simulations. See the user guide for more information on this and on how to run PC-RTTOV simulations. See below for information on the PC regression limits for trace gases, aerosols, and clouds.

Downloads

  • All files are linked in the table below.
  • Due to the large size of the hi-res sounder files netCDF is the preferred format for them. Please contact the NWP SAF Helpdesk to request an ASCII version of a file if required. See here for notes on converting between coefficient file formats and extracting subsets of channels from coefficient files.
  • Download to folders as follows:
    • PC-RTTOV-compatible v13 predictor 101L rtcoef files – download to rtcoef_rttov14/rttov13pred101L/
    • PC-RTTOV pccoef files – download to rtcoef_rttov14/pc/
    • OPAC aerosol optical property rttov_aertable files – download to rtcoef_rttov14/aertable_visir/
    • Hydrometeor optical property rttov_hydrotable files – download to rtcoef_rttov14/hydrotable_visir/
SensorTrace gases
for PC
NLTE
for PC?
Aerosols for PC?Hydrometeors for PC?Surface types for PCOptical depth coef filenameDate of rtcoef file creationPC coef filenameDate of pccoef file creationAssociated OPAC aertable
filename
Associated hydrotable
filename
IASIO3, CO2, N2O
CO, CH4
YYYland, seartcoef_metop_2_iasi_7gas.nc29/11/2024In preparation -rttov_aertable_metop_2_iasi_opac_fast-only.ncrttov_hydrotable_metop_2_iasi_fast-only.nc
IASI-NGO3, CO2, N2O
CO, CH4
YYYland, seartcoef_metopsg_1_iasing_7gas.nc7/10/2024
In preparation -rttov_aertable_metopsg_1_iasing_opac_fast-only.ncrttov_hydrotable_metopsg_1_iasing_fast-only.nc
MTG-IRS HAOTOLAO3, CO2, N2O
CO, CH4
YYYland, seartcoef_mtg_2_irs-haotola-2mopd_7gas.nc14/11/2024In preparation -rttov_aertable_mtg_2_irs_opac_fast-only.ncrttov_hydrotable_mtg_2_irs_fast-only.nc

The Metop-2 (Metop-A) IASI files above can also be used for Metop-B and -C.


Multispectral UV/VIS/IR coefficients and optical properties

General information on visible/IR optical depth coefficient files:

  • Based on LBLRTM v12.8 line-by-line model
  • Based on v13 predictors
  • Based on 54 levels
  • Coefficients with variable O3+CO2 for all sensors
  • Coefficients with all supported variable gases (“7gas”) for selected sensors (others on request)
  • Solar-enabled for channels below 5 microns: all files support all channels for which we have spectral response data
  • Coefficients for GEO sensors support the full range of zenith angles covered by RTTOV (up to ~85 degrees)
  • Not NLTE compatible
  • Not PC compatible

NB Currently NOAA SSU and Nimbus-6 PMR coefficients are not available based on v13 predictors: the RTTOV v12 files based on v8 predictors can be used with RTTOV v14.

Downloads

SensorTrace gasesFilenameDate of file creationAssociated hydrotable filenameAssociated OPAC aertable filenameAssociated CAMS aertable filenameAssociated ICON aertable filename
(A)ATSR*O3, CO2rtcoef_ers_x_atsr_o3co2.dat
rtcoef_envisat_1_atsr_o3co2.dat
16/10/2020rttov_hydrotable_ers_x_atsr.dat
rttov_hydrotable_envisat_1_atsr.dat
rttov_aertable_ers_x_atsr_opac.dat
rttov_aertable_envisat_1_atsr_opac.dat
rttov_aertable_ers_x_atsr_cams.dat
rttov_aertable_envisat_1_atsr_cams.dat
rttov_aertable_ers_x_atsr_icon.dat
rttov_aertable_envisat_1_atsr_icon.dat
AATSR-shifted
Info on AATSR 12 um anomaly
O3, CO2rtcoef_envisat_1_atsr-shifted_o3co2.dat16/10/2020rttov_hydrotable_envisat_1_atsr-shifted.datrttov_aertable_envisat_1_atsr-shifted_opac.datrttov_aertable_envisat_1_atsr-shifted_cams.datrttov_aertable_envisat_1_atsr-shifted_icon.dat
ABIO3, CO2rtcoef_goes_xx_abi_o3co2.dat16/10/2020rttov_hydrotable_goes_xx_abi.datrttov_aertable_goes_xx_abi_opac.datrttov_aertable_goes_xx_abi_cams.datrttov_aertable_goes_xx_abi_icon.dat
ABIO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_goes_xx_abi_7gas.dat24/09/2020
25/09/2020
As aboveAs aboveAs aboveAs above
AGRIO3, CO2rtcoef_fy4_x_agri_o3co2.dat16/10/2020
01/09/2022
rttov_hydrotable_fy4_x_agri.datrttov_aertable_fy4_x_agri_opac.datrttov_aertable_fy4_x_agri_cams.datrttov_aertable_fy4_x_agri_icon.dat
AGRIO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_fy4_x_agri_7gas.dat27/09/2024
01/09/2022
As aboveAs aboveAs aboveAs above
AHIO3, CO2rtcoef_himawari_x_ahi_o3co2.dat16/10/2020rttov_hydrotable_himawari_x_ahi.datrttov_aertable_himawari_x_ahi_opac.datrttov_aertable_himawari_x_ahi_cams.datrttov_aertable_himawari_x_ahi_icon.dat
AHIO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_himawari_x_ahi_7gas.dat24/09/2020As aboveAs aboveAs aboveAs above
AMIO3, CO2rtcoef_gkompsat2_1_ami_o3co2.dat03/05/2021
rttov_hydrotable_gkompsat2_1_ami.datrttov_aertable_gkompsat2_1_ami_opac.datrttov_aertable_gkompsat2_1_ami_cams.datrttov_aertable_gkompsat2_1_ami_icon.dat
AMIO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_gkompsat2_1_ami_7gas.dat03/05/2021As aboveAs aboveAs aboveAs above
ASTERO3, CO2rtcoef_eos_1_aster_o3co2.dat16/10/2020rttov_hydrotable_eos_1_aster.datrttov_aertable_eos_1_aster_opac.datrttov_aertable_eos_1_aster_cams.datrttov_aertable_eos_1_aster_icon.dat
AVHRRO3, CO2rtcoef_noaa_xx_avhrr_o3co2.dat
rtcoef_metop_x_avhrr_o3co2.dat
16/10/2020rttov_hydrotable_noaa_xx_avhrr.dat
rttov_hydrotable_metop_x_avhrr.dat
rttov_aertable_noaa_xx_avhrr_opac.dat
rttov_aertable_metop_x_avhrr_opac.dat
rttov_aertable_noaa_xx_avhrr_cams.dat
rttov_aertable_metop_x_avhrr_cams.dat
rttov_aertable_noaa_xx_avhrr_icon.dat
rttov_aertable_metop_x_avhrr_icon.dat
CLIMO3, CO2rtcoef_co2m_1_clim_o3co2.dat19/06/2023rttov_hydrotable_co2m_1_clim.datrttov_aertable_co2m_1_clim_opac.datrttov_aertable_co2m_1_clim_cams.datrttov_aertable_co2m_1_clim_icon.dat
CLIMO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_co2m_1_clim_7gas.dat19/06/2023As aboveAs aboveAs aboveAs above
ECOSTRESSO3, CO2rtcoef_iss_1_ecostres_o3co2.dat28/10/2020rttov_hydrotable_iss_1_ecostres.datrttov_aertable_iss_1_ecostres_opac.datrttov_aertable_iss_1_ecostres_cams.datrttov_aertable_iss_1_ecostres_icon.dat
EOIRO3, CO2rtcoef_micro2c_1_eoir_o3co2.dat25/10/2024----
EOIRO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_micro2c_1_eoir_7gas.dat26/10/2024----
EPICO3, CO2rtcoef_dscovr_1_epic_o3co2.dat30/10/2020rttov_hydrotable_dscovr_1_epic.datrttov_aertable_dscovr_1_epic_opac.datrttov_aertable_dscovr_1_epic_cams.datrttov_aertable_dscovr_1_epic_icon.dat
FCIO3, CO2rtcoef_mtg_1_fci_o3co2.dat13/05/2022rttov_hydrotable_mtg_1_fci.datrttov_aertable_mtg_1_fci_opac.datrttov_aertable_mtg_1_fci_cams.datrttov_aertable_mtg_1_fci_icon.dat
FCIO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_mtg_1_fci_7gas.dat13/05/2022As aboveAs aboveAs aboveAs above
GMS imagerO3, CO2rtcoef_gms_x_imager_o3co2.dat16/10/2020rttov_hydrotable_gms_x_imager.datrttov_aertable_gms_x_imager_opac.datrttov_aertable_gms_x_imager_cams.datrttov_aertable_gms_x_imager_icon.dat
GOES imagerO3, CO2rtcoef_goes_xx_imager_o3co2.dat16/10/2020rttov_hydrotable_goes_xx_imager.datrttov_aertable_goes_xx_imager_opac.datrttov_aertable_goes_xx_imager_cams.datrttov_aertable_goes_xx_imager_icon.dat
GOES sounderO3, CO2rtcoef_goes_xx_sounder_o3co2.dat16/10/2020rttov_hydrotable_goes_xx_sounder.datrttov_aertable_goes_xx_sounder_opac.datrttov_aertable_goes_xx_sounder_cams.datrttov_aertable_goes_xx_sounder_icon.dat
HIRSO3, CO2rtcoef_noaa_xx_hirs_o3co2.dat
rtcoef_metop_x_hirs_o3co2.dat
rtcoef_nimbus_6_hirs_o3co2.dat
16/10/2020rttov_hydrotable_noaa_xx_hirs.dat
rttov_hydrotable_metop_x_hirs.dat
rttov_hydrotable_nimbus_6_hirs.dat
rttov_aertable_noaa_xx_hirs_opac.dat
rttov_aertable_metop_x_hirs_opac.dat
rttov_aertable_nimbus_6_hirs_opac.dat
rttov_aertable_noaa_xx_hirs_cams.dat
rttov_aertable_metop_x_hirs_cams.dat
rttov_aertable_nimbus_6_hirs_cams.dat
rttov_aertable_noaa_xx_hirs_icon.dat
rttov_aertable_metop_x_hirs_icon.dat
rttov_aertable_nimbus_6_hirs_icon.dat
HIRS shifted
spectral response
O3, CO2rtcoef_noaa_xx_hirs-shifted_o3co2.dat
rtcoef_metop_x_hirs-shifted_o3co2.dat
16/10/2020rttov_hydrotable_noaa_xx_hirs-shifted.dat
rttov_hydrotable_metop_x_hirs-shifted.dat
rttov_aertable_noaa_xx_hirs-shifted_opac.dat
rttov_aertable_metop_x_hirs-shifted_opac.dat
rttov_aertable_noaa_xx_hirs-shifted_cams.dat
rttov_aertable_metop_x_hirs-shifted_cams.dat
rttov_aertable_noaa_xx_hirs-shifted_icon.dat
rttov_aertable_metop_x_hirs-shifted_icon.dat
HRIRO3, CO2rtcoef_nimbus_x_hrir_o3co2.dat16/10/2020rttov_hydrotable_nimbus_x_hrir.datrttov_aertable_nimbus_x_hrir_opac.datrttov_aertable_nimbus_x_hrir_cams.datrttov_aertable_nimbus_x_hrir_icon.dat
IIRO3, CO2rtcoef_calipso_1_iir_o3co2.dat16/10/2020rttov_hydrotable_calipso_1_iir.datrttov_aertable_calipso_1_iir_opac.datrttov_aertable_calipso_1_iir_cams.datrttov_aertable_calipso_1_iir_icon.dat
INSAT-3D(R/S) imagerO3, CO2rtcoef_insat3_x_imager_o3co2.dat16/10/2020
15/09/2023
rttov_hydrotable_insat3_x_imager.datrttov_aertable_insat3_x_imager_opac.datrttov_aertable_insat3_x_imager_cams.datrttov_aertable_insat3_x_imager_icon.dat
INSAT-3D(R/S) sounderO3, CO2rtcoef_insat3_x_sounder_o3co2.dat16/10/2020
19/01/2024
rttov_hydrotable_insat3_x_sounder.datrttov_aertable_insat3_x_sounder_opac.datrttov_aertable_insat3_x_sounder_cams.datrttov_aertable_insat3_x_sounder_icon.dat
IRASO3, CO2rtcoef_fy3_1_iras_o3co2.dat16/10/2020rttov_hydrotable_fy3_1_iras.datrttov_aertable_fy3_1_iras_opac.datrttov_aertable_fy3_1_iras_cams.datrttov_aertable_fy3_1_iras_icon.dat
IRMSSO3, CO2rtcoef_hj1_2_irmss_o3co2.dat27/10/2020rttov_hydrotable_hj1_2_irmss.datrttov_aertable_hj1_2_irmss_opac.datrttov_aertable_hj1_2_irmss_cams.datrttov_aertable_hj1_2_irmss_icon.dat
LI**O3, CO2rtcoef_mtg_1_li_o3co2.dat16/10/2020----
MBFIRIO3, CO2rtcoef_ticfire_1_mbfiri_o3co2.dat16/10/2020rttov_hydrotable_ticfire_1_mbfiri.datrttov_aertable_ticfire_1_mbfiri_opac.datrttov_aertable_ticfire_1_mbfiri_cams.datrttov_aertable_ticfire_1_mbfiri_icon.dat
MERSI-1O3, CO2rtcoef_fy3_3_mersi1_o3co2.dat27/10/2020rttov_hydrotable_fy3_3_mersi1.datrttov_aertable_fy3_3_mersi1_opac.datrttov_aertable_fy3_3_mersi1_cams.datrttov_aertable_fy3_3_mersi1_icon.dat
MERSI-2O3, CO2rtcoef_fy3_4_mersi2_o3co2.dat16/10/2020rttov_hydrotable_fy3_4_mersi2.datrttov_aertable_fy3_4_mersi2_opac.datrttov_aertable_fy3_4_mersi2_cams.datrttov_aertable_fy3_4_mersi2_icon.dat
MERSI-LLO3, CO2rtcoef_fy3_5_mersill_o3co2.dat08/02/2022rttov_hydrotable_fy3_5_mersill.datrttov_aertable_fy3_5_mersill_opac.datrttov_aertable_fy3_5_mersill_cams.datrttov_aertable_fy3_5_mersill_icon.dat
MERSI-LLO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_fy3_5_mersill_7gas.dat08/02/2022As aboveAs aboveAs aboveAs above
MERSI-3O3, CO2rtcoef_fy3_6_mersi3_o3co2.dat18/01/2024rttov_hydrotable_fy3_6_mersi3.datrttov_aertable_fy3_6_mersi3_opac.datrttov_aertable_fy3_6_mersi3_cams.datrttov_aertable_fy3_6_mersi3_icon.dat
MERSI-RMO3, CO2rtcoef_fy3_7_mersirm_o3co2.dat22/01/2024rttov_hydrotable_fy3_7_mersirm.datrttov_aertable_fy3_7_mersirm_opac.datrttov_aertable_fy3_7_mersirm_cams.datrttov_aertable_fy3_7_mersirm_icon.dat
MERSI-RMO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_fy3_7_mersirm_7gas.dat23/01/2024As aboveAs aboveAs aboveAs above
MetImageO3, CO2rtcoef_metopsg_1_metimage_o3co2.dat16/10/2020rttov_hydrotable_metopsg_1_metimage.datrttov_aertable_metopsg_1_metimage_opac.datrttov_aertable_metopsg_1_metimage_cams.datrttov_aertable_metopsg_1_metimage_icon.dat
MIO3, CO2rtcoef_coms_1_mi_o3co2.dat16/10/2020rttov_hydrotable_coms_1_mi.datrttov_aertable_coms_1_mi_opac.datrttov_aertable_coms_1_mi_cams.datrttov_aertable_coms_1_mi_icon.dat
MODISO3, CO2rtcoef_eos_x_modis_o3co2.dat16/10/2020rttov_hydrotable_eos_x_modis.datrttov_aertable_eos_x_modis_opac.datrttov_aertable_eos_x_modis_cams.datrttov_aertable_eos_x_modis_icon.dat
MODIS shifted spectral responseO3, CO2rtcoef_eos_x_modis-shifted_o3co2.dat16/10/2020rttov_hydrotable_eos_x_modis-shifted.datrttov_aertable_eos_x_modis-shifted_opac.datrttov_aertable_eos_x_modis-shifted_cams.datrttov_aertable_eos_x_modis-shifted_icon.dat
MODIS shifted spectral responseO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_eos_x_modis-shifted_7gas.dat25/09/2020As aboveAs aboveAs aboveAs above
MODIS-C7 shifted spectral responseO3, CO2rtcoef_eos_x_modis-C7_o3co2.dat17/10/2024
06/11/2024
rttov_hydrotable_eos_x_modis-C7.datrttov_aertable_eos_x_modis-C7_opac.datrttov_aertable_eos_x_modis-C7_cams.datrttov_aertable_eos_x_modis-C7_icon.dat
MODIS-C7 shifted spectral responseO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_eos_x_modis-C7_7gas.dat17/10/2024
06/11/2024
As aboveAs aboveAs aboveAs above
MRIRO3, CO2rtcoef_nimbus_x_mrir_o3co2.dat16/10/2020rttov_hydrotable_nimbus_x_mrir.datrttov_aertable_nimbus_x_mrir_opac.datrttov_aertable_nimbus_x_mrir_cams.datrttov_aertable_nimbus_x_mrir_icon.dat
Earth-CARE MSIO3, CO2rtcoef_earthcare_1_msi_o3co2.dat06/05/2022rttov_hydrotable_earthcare_1_msi.datrttov_aertable_earthcare_1_msi_opac.datrttov_aertable_earthcare_1_msi_cams.datrttov_aertable_earthcare_1_msi_icon.dat
Earth-CARE MSIO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_earthcare_1_msi_7gas.dat10/05/2022As aboveAs aboveAs aboveAs above
Sentinel-2 MSIO3, CO2rtcoef_sentinel2_x_msi_o3co2.dat16/10/2020rttov_hydrotable_sentinel2_x_msi.datrttov_aertable_sentinel2_x_msi_opac.datrttov_aertable_sentinel2_x_msi_cams.datrttov_aertable_sentinel2_x_msi_icon.dat
MSUGSO3, CO2rtcoef_electro-l_2_msugs_o3co2.dat16/10/2020rttov_hydrotable_electro-l_2_msugs.datrttov_aertable_electro-l_2_msugs_opac.datrttov_aertable_electro-l_2_msugs_cams.datrttov_aertable_electro-l_2_msugs_icon.dat
MSUMRO3, CO2rtcoef_meteor-m_x_msumr_o3co2.dat16/10/2020rttov_hydrotable_meteor-m_x_msumr.datrttov_aertable_meteor-m_x_msumr_opac.datrttov_aertable_meteor-m_x_msumr_cams.datrttov_aertable_meteor-m_x_msumr_icon.dat
MTSAT imagerO3, CO2rtcoef_mtsat_x_imager_o3co2.dat29/10/2020
16/10/2020
rttov_hydrotable_mtsat_x_imager.datrttov_aertable_mtsat_x_imager_opac.datrttov_aertable_mtsat_x_imager_cams.datrttov_aertable_mtsat_x_imager_icon.dat
MVIRI (IR channels only)O3, CO2rtcoef_meteosat_x_mviri_o3co2.dat16/10/2020rttov_hydrotable_meteosat_x_mviri.datrttov_aertable_meteosat_x_mviri_opac.datrttov_aertable_meteosat_x_mviri_cams.datrttov_aertable_meteosat_x_mviri_icon.dat
MVIRI-VIS****O3, CO2rtcoef_meteosat_x_mviri-vis_o3co2.dat31/05/2021
01/06/2021
02/06/2021
27/05/2021
----
MVISRO3, CO2rtcoef_fy1_x_mvisr_o3co2.dat16/10/2020rttov_hydrotable_fy1_x_mvisr.datrttov_aertable_fy1_x_mvisr_opac.datrttov_aertable_fy1_x_mvisr_cams.datrttov_aertable_fy1_x_mvisr_icon.dat
OLCI***O3, CO2rtcoef_sentinel3_x_olci_o3co2.dat16/10/2020rttov_hydrotable_sentinel3_1_olci.dat
rttov_hydrotable_sentinel3_2_olci.dat
rttov_aertable_sentinel3_1_olci_opac.dat
rttov_aertable_sentinel3_2_olci_opac.dat
rttov_aertable_sentinel3_1_olci_cams.dat
rttov_aertable_sentinel3_2_olci_cams.dat
rttov_aertable_sentinel3_1_olci_icon.dat
rttov_aertable_sentinel3_2_olci_icon.dat
OLIO3, CO2rtcoef_landsat_x_oli_o3co2.dat16/10/2020
23/06/2023
rttov_hydrotable_landsat_x_oli.datrttov_aertable_landsat_x_oli_opac.datrttov_aertable_landsat_x_oli_cams.datrttov_aertable_landsat_x_oli_icon.dat
OLIO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_landsat_9_oli_7gas.dat23/06/2023As aboveAs aboveAs aboveAs above
SBGO3, CO2rtcoef_sbg_1_sbg_o3co2.dat22/10/2024rttov_hydrotable_sbg_1_sbg.datrttov_aertable_sbg_1_sbg_opac.datrttov_aertable_sbg_1_sbg_cams.datrttov_aertable_sbg_1_sbg_icon.dat
SBGO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_sbg_1_sbg_7gas.dat23/10/2024As aboveAs aboveAs aboveAs above
SEVIRIO3, CO2rtcoef_msg_x_seviri_o3co2.dat16/10/2020rttov_hydrotable_msg_x_seviri.datrttov_aertable_msg_x_seviri_opac.datrttov_aertable_msg_x_seviri_cams.datrttov_aertable_msg_x_seviri_icon.dat
SEVIRIO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_msg_x_seviri_7gas.dat24/09/2020As aboveAs aboveAs aboveAs above
SGLIO3, CO2rtcoef_gcom-c_1_sgli_o3co2.dat16/10/2020rttov_hydrotable_gcom-c_1_sgli.datrttov_aertable_gcom-c_1_sgli_opac.datrttov_aertable_gcom-c_1_sgli_cams.datrttov_aertable_gcom-c_1_sgli_icon.dat
SIRS / SIRS-BLURO3, CO2rtcoef_nimbus_x_sirs_o3co2.dat
rtcoef_nimbus_x_sirs-blur_o3co2.dat
16/10/2020rttov_hydrotable_nimbus_x_sirs.dat
(same file for sirs-blur)
rttov_aertable_nimbus_x_sirs_opac.dat
(same file for sirs-blur)
rttov_aertable_nimbus_x_sirs_cams.dat
(same file for sirs-blur)
rttov_aertable_nimbus_x_sirs_icon.dat
(same file for sirs-blur)
SLSTRO3, CO2rtcoef_sentinel3_x_slstr_o3co2.dat16/10/2020rttov_hydrotable_sentinel3_x_slstr.datrttov_aertable_sentinel3_x_slstr_opac.datrttov_aertable_sentinel3_x_slstr_cams.datrttov_aertable_sentinel3_x_slstr_icon.dat
SLSTRO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_sentinel3_x_slstr_7gas.dat16/10/2020As aboveAs aboveAs aboveAs above
SSHO3, CO2rtcoef_dmsp_x_ssh_o3co2.dat28/07/2022rttov_hydrotable_dmsp_x_ssh.datrttov_aertable_dmsp_x_ssh_opac.datrttov_aertable_dmsp_x_ssh_cams.datrttov_aertable_dmsp_x_ssh_icon.dat
SSTMO3, CO2rtcoef_oceansat_3_sstm_o3co2.dat02/12/2022rttov_hydrotable_oceansat_3_sstm.datrttov_aertable_oceansat_3_sstm_opac.datrttov_aertable_oceansat_3_sstm_cams.datrttov_aertable_oceansat_3_sstm_icon.dat
THIRO3, CO2rtcoef_nimbus_x_thir_o3co2.dat16/10/2020rttov_hydrotable_nimbus_x_thir.datrttov_aertable_nimbus_x_thir_opac.datrttov_aertable_nimbus_x_thir_cams.datrttov_aertable_nimbus_x_thir_icon.dat
TIRSO3, CO2rtcoef_landsat_x_tirs_o3co2.dat16/10/2020
25/06/2023
rttov_hydrotable_landsat_x_tirs.datrttov_aertable_landsat_x_tirs_opac.datrttov_aertable_landsat_x_tirs_cams.datrttov_aertable_landsat_x_tirs_icon.dat
TIRSO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_landsat_9_tirs_7gas.dat25/06/2023As aboveAs aboveAs aboveAs above
TMO3, CO2rtcoef_landsat_x_tm_o3co2.dat27/10/2022rttov_hydrotable_landsat_x_tm.datrttov_aertable_landsat_x_tm_opac.datrttov_aertable_landsat_x_tm_cams.datrttov_aertable_landsat_x_tm_icon.dat
TRISHNA-TIRO3, CO2rtcoef_trishna_1_tir_o3co2.dat06/05/2021rttov_hydrotable_trishna_1_tir.datrttov_aertable_trishna_1_tir_opac.datrttov_aertable_trishna_1_tir_cams.datrttov_aertable_trishna_1_tir_icon.dat
TRISHNA-TIRO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_trishna_1_tir_7gas.dat06/05/2021As aboveAs aboveAs aboveAs above
VIIRSO3, CO2rtcoef_jpss_0_viirs_o3co2.dat
rtcoef_noaa_xx_viirs_o3co2.dat
16/10/2020
30/06/2022
rttov_hydrotable_jpss_0_viirs.dat
rttov_hydrotable_noaa_xx_viirs.dat
rttov_aertable_jpss_0_viirs_opac.dat
rttov_aertable_noaa_xx_viirs_opac.dat
rttov_aertable_jpss_0_viirs_cams.dat
rttov_aertable_noaa_xx_viirs_cams.dat
rttov_aertable_jpss_0_viirs_icon.dat
rttov_aertable_noaa_xx_viirs_icon.dat
VIIRSO3, CO2, N2O, 
CO, CH4, SO2
rtcoef_noaa_21_viirs_7gas.dat30/06/2022As aboveAs aboveAs aboveAs above
VIMSO3, CO2rtcoef_gf5_1_vims_o3co2.dat16/10/2020rttov_hydrotable_gf5_1_vims.datrttov_aertable_gf5_1_vims_opac.datrttov_aertable_gf5_1_vims_cams.datrttov_aertable_gf5_1_vims_icon.dat
VIRRO3, CO2rtcoef_fy3_3_virr_o3co2.dat16/10/2020rttov_hydrotable_fy3_3_virr.datrttov_aertable_fy3_3_virr_opac.datrttov_aertable_fy3_3_virr_cams.datrttov_aertable_fy3_3_virr_icon.dat
VISSRO3, CO2rtcoef_fy2_x_vissr_o3co2.dat16/10/2020
10/05/2021
rttov_hydrotable_fy2_x_vissr.datrttov_aertable_fy2_x_vissr_opac.datrttov_aertable_fy2_x_vissr_cams.datrttov_aertable_fy2_x_vissr_icon.dat
VTPRO3, CO2rtcoef_noaa_x_vtpr1_o3co2.dat16/10/2020----

NB “NOAA-5” is TIROS-N.

* The ERS-1 ATSR coefficient file contains coefficients for 7 channels: 1-4 are the standard channels (12, 11, 3.7, 1.6 microns respectively) and 5-7 are additional coefficients for the 12 micron channel using spectral responses valid at different sensor temperatures. The corresponding cloud and aerosol coefficients have been generated using this coefficient file and as such contain data for the 7 channels in the rtcoef file.

** The MTG LI file contains coefficients for two channels with SRFs corresponding to incidence angles of 0 and 5.1 degrees (channels 1 and 2 respectively).

*** The channel indexing in the OLCI coefficients is a special case: see the file headers for information on the channel indexing. Due to their size, the OLCI hydrometeor and aerosol optical property files are linked in the table above.

**** The MVIRI-VIS files contain coefficients for the MVIRI visible channel at 0.6 microns. As described in Quast et al (2019), the spectral response functions (SRFs) for this channel on each MVIRI platform have been changing over time, typically with more rapid change earlier in their lifetime than towards the end. The SRFs have been characterised at 45 day intervals throughout each satellite’s lifetime. Within each full year the SRFs were determined for the same days, starting at day 33 and ending at day 348. These MVIRI-VIS coefficient files contain one channel for each SRF for each platform and each file has a different number of channels since each platform had a different lifespan. The “README_SPECTRAL_RESPONSE_FUNCTION” section within each file provides the validity date of the first and last SRFs/channels in each file as YYYYDDD where YYYY is the year, and DDD is the day of the year. Users may wish to select the SRF/channel closest in time to that of their simulation. The contents of the files are summarised in this text file. An example Python function has been created which can be used to return the channel number corresponding to the SRF valid closest to the specified date for the specified Meteosat platform.

***** PMR coefficients are a special case: the zenith angle must be set to zero as the zenith angle is part of each channel definition. The CO2 profiles used for training the PMR coefficients are different to those used for other coefficients: see the coefficient file for the reference (background) profile and the profile min/max envelope.


MFASIS-NN files for visible/near-IR cloud simulations

MFASIS-NN files are used alongside visible/IR rtcoef and rttov_hydrotable files for the same sensor.

The table below lists the channels currently supported by MFASIS-NN for each coefficient file. Not all channels can be supported by MFASIS-NN currently, but the model is being activately developed to extend support to new channels.

This document gives some guidance on the accuracy of the MFASIS-NN parameterisation vs the RTTOV-DOM training simulations.

Downloads

SensorAssociated rtcoef filenameAssociated hydrotable filenameSupported channels (RTTOV channel numbers)MFASIS NN fileDate of MFASIS-NN file creation
ABIrtcoef_goes_16_abi*.dat
rtcoef_goes_17_abi*.dat
rtcoef_goes_18_abi*.dat
rtcoef_goes_19_abi*.dat
rttov_hydrotable_goes_16_abi.dat
rttov_hydrotable_goes_17_abi.dat
rttov_hydrotable_goes_18_abi.dat
rttov_hydrotable_goes_19_abi.dat
1,2,3,5,6rttov_mfasis_nn_hydro_goes_16_abi.dat
rttov_mfasis_nn_hydro_goes_17_abi.dat
rttov_mfasis_nn_hydro_goes_18_abi.dat
rttov_mfasis_nn_hydro_goes_19_abi.dat
13/12/2024
13/12/2024
13/12/2024
13/12/2024
AGRIrtcoef_fy4_1_agri*.dat
rtcoef_fy4_2_agri*.dat
rttov_hydrotable_fy4_1_agri*.dat
rttov_hydrotable_fy4_2_agri*.dat
1,5 (FY-4A)
1,2,5 (FY-4B)
rttov_mfasis_nn_hydro_fy4_1_agri*.dat
rttov_mfasis_nn_hydro_fy4_2_agri*.dat
13/12/2024
13/12/2024
AHIrtcoef_himawari_8_ahi*.dat
rtcoef_himawari_9_ahi*.dat
rttov_hydrotable_himawari_8_ahi.dat
rttov_hydrotable_himawari_9_ahi.dat
1,2,3,4,5,6
rttov_mfasis_nn_hydro_himawari_8_ahi.dat
rttov_mfasis_nn_hydro_himawari_9_ahi.dat
13/12/2024
13/12/2024
AMIrtcoef_gkompsat2_1_ami*.datrttov_hydrotable_gkompsat2_1_ami.dat1,2,3,4,6rttov_mfasis_nn_hydro_gkompsat2_1_ami.dat13/12/2024
AVHRRrtcoef_metop_1_avhrr*.dat
rtcoef_metop_2_avhrr*.dat
rtcoef_metop_3_avhrr*.dat
rttov_hydrotable_metop_1_avhrr.dat
rttov_hydrotable_metop_2_avhrr.dat
rttov_hydrotable_metop_3_avhrr.dat
1,3rttov_mfasis_nn_hydro_metop_1_avhrr.dat
rttov_mfasis_nn_hydro_metop_2_avhrr.dat
rttov_mfasis_nn_hydro_metop_3_avhrr.dat
13/12/2024
13/12/2024
13/12/2024
AVHRRrtcoef_noaa_14_avhrr*.datrttov_hydrotable_noaa_14_avhrr.dat1rttov_mfasis_nn_hydro_noaa_14_avhrr.dat13/12/2024
EPIC (see notes below)rtcoef_dscovr_1_epic*.datrttov_hydrotable_dscovr_1_epic.dat1,2,3,6rttov_mfasis_nn_hydro_dscovr_1_epic.dat13/12/2024
FCIrtcoef_mtg_1_fci*.datrttov_hydrotable_mtg_1_fci.dat1,2,3,4,7,8rttov_mfasis_nn_hydro_mtg_1_fci.dat13/12/2024
GOES imagerrtcoef_goes_13_imager*.dat
rtcoef_goes_14_imager*.dat
rtcoef_goes_15_imager*.dat
rttov_hydrotable_goes_13_imager.dat
rttov_hydrotable_goes_14_imager.dat
rttov_hydrotable_goes_15_imager.dat
1rttov_mfasis_nn_hydro_goes_13_imager.dat
rttov_mfasis_nn_hydro_goes_14_imager.dat
rttov_mfasis_nn_hydro_goes_15_imager.dat
13/12/2024
13/12/2024
13/12/2024
MERSI2rtcoef_fy3_4_mersi2*.datrttov_hydrotable_fy3_4_mersi2.dat1,2,3,4,5,6,7,8,
10,11,12,16,18
rttov_mfasis_nn_hydro_fy3_4_mersi2.dat13/12/2024
METImagertcoef_metopsg_1_metimage*.datrttov_hydrotable_metopsg_1_metimage.dat1,2,3,4,6,8,10,11rttov_mfasis_nn_hydro_metopsg_1_metimage.dat13/12/2024
MODISrtcoef_eos_1_modis*.dat
rtcoef_eos_2_modis*.dat
rttov_hydrotable_eos_1_modis.dat
rttov_hydrotable_eos_2_modis.dat
1,2,3,4,5,6,8,9,10,
11,12,13,14,15,16
rttov_mfasis_nn_hydro_eos_1_modis.dat
rttov_mfasis_nn_hydro_eos_2_modis.dat
13/12/2024
13/12/2024
SEVIRIrtcoef_msg_1_seviri*.dat
rtcoef_msg_2_seviri*.dat
rtcoef_msg_3_seviri*.dat
rtcoef_msg_4_seviri*.dat
rttov_hydrotable_msg_1_seviri.dat
rttov_hydrotable_msg_2_seviri.dat
rttov_hydrotable_msg_3_seviri.dat
rttov_hydrotable_msg_4_seviri.dat
1,3rttov_mfasis_nn_hydro_msg_1_seviri.dat
rttov_mfasis_nn_hydro_msg_2_seviri.dat
rttov_mfasis_nn_hydro_msg_3_seviri.dat
rttov_mfasis_nn_hydro_msg_4_seviri.dat
13/12/2024
13/12/2024
13/12/2024
13/12/2024
VIRRrtcoef_fy3_3_virr*.datrttov_hydrotable_fy3_3_virr.dat1,2,3,4,7rttov_mfasis_nn_hydro_fy3_3_virr.dat13/12/2024
VIIRSrtcoef_jpss_0_viirs*.dat
rtcoef_noaa_20_viirs*.dat
rtcoef_noaa_21_viirs*.dat
rttov_hydrotable_jpss_0_viirs.dat
rttov_hydrotable_noaa_20_viirs.dat
rttov_hydrotable_noaa_21_viirs.dat
1,2,3,4,5,6,7,8,9,
11,13,14,15
rttov_mfasis_nn_hydro_jpss_0_viirs.dat
rttov_mfasis_nn_hydro_noaa_20_viirs.dat
rttov_mfasis_nn_hydro_noaa_21_viirs.dat
13/12/2024
13/12/2024
13/12/2024

Notes:
EPIC
RTTOV currently only supports channels 5-10 of the EPIC sensor. In RTTOV these supported channels are numbered 1-6. The EPIC MFASIS NNs support only channels 1, 2, 3 and 6 of these (5, 6, 7, and 10 in the instrument channel numbering): channels 4 and 5 (8 and 9, at 688nm and 764nm) are not currently simulated by MFASIS because the significant O2 absorption means that the amount of atmosphere between the sensor and the cloud must be accounted for, and this is not yet implemented in MFASIS-NN. In addition the EPIC NNs are trained for a restricted set of scattering angles (4-14 degrees, where zero represents direct back-scatter) appropriate to the orbit of this sensor.


MW optical depth coefs and hydrometeor optical properties

General information on MW sensor optical depth coefficient files:

  • Based on Liebe 89/92 LbL model
  • All on 54 levels except for the Zeeman files
  • v13 predictors
  • Coefficients with variable O3 for all sensors except for the Zeeman files
  • No Planck-weighted channels
  • Not solar compatible
  • Not NLTE compatible
  • Not PC compatible

Downloads

SensorFilenameDate of rtcoef
file creation
Associated hydrotable
filename
Date of hydrotable
file creation
Hydrotable
radar-enabled?
AltiKartcoef_saral_1_altika_o3.dat06/12/2024rttov_hydrotable_saral_altika.dat29/01/2024N
AMRrtcoef_jason_2_amr_o3.dat06/12/2024-
AMR-Crtcoef_jasoncs_1_amrc_o3.dat06/12/2024rttov_hydrotable_jasoncs_amrc.dat29/10/2024N
AMSR-Ertcoef_eos_2_amsre_o3.dat06/12/2024rttov_hydrotable_eos_amsre.dat29/01/2024N
AMSR2rtcoef_gcom-w_1_amsr2_o3.dat06/12/2024rttov_hydrotable_gcom-w_amsr2.dat29/01/2024N
AMSR3rtcoef_gosat-gw_1_amsr3_o3.dat06/12/2024rttov_hydrotable_gosat-gw_amsr3.dat29/01/2024N
AMSU-Artcoef_noaa_xx_amsua_o3.dat
rtcoef_metop_x_amsua_o3.dat
rtcoef_eos_2_amsua_o3.dat
06/12/2024rttov_hydrotable_noaa_amsua.dat
rttov_hydrotable_metop_amsua.dat (rename/copy noaa file)
rttov_hydrotable_eos_amsua.dat (rename/copy noaa file)
29/01/2024N
AMSUA-A SRFrtcoef_noaa_19_amsua_o3_srf.dat10/12/2024As above
AMSU-Brtcoef_noaa_xx_amsub_o3.dat06/12/2024rttov_hydrotable_noaa_amsub.dat
29/01/2024N
ATMSrtcoef_jpss_0_atms_o3.dat
rtcoef_noaa_20_atms_o3.dat
06/12/2024rttov_hydrotable_jpss_atms.dat
hydrotable_noaa_atms.dat (rename/copy jpss file)
29/01/2024N
ATMS SRFrtcoef_jpss_0_atms_o3_srf.dat
rtcoef_noaa_xx_atms_o3_srf.dat
17/12/2024As above
AWSrtcoef_aws_1_aws_o3.dat06/12/2024rttov_hydrotable_aws_aws.dat29/01/2024N
AWS SRFrtcoef_aws_1_aws_o3_srf.dat10/12/2024As above
CIMRrtcoef_cimr_1_cimr_o3.dat06/12/2024rttov_hydrotable_cimr_cimr.dat29/01/2024N
COWVRrtcoef_ors_6_cowvr_o3.dat06/12/2024-
CPR (CloudSat)rtcoef_cloudsat_1_cpr_o3.dat06/12/2024rttov_hydrotable_cloudsat_cpr.dat
29/01/2024Y
CPR (EarthCARE)rtcoef_earthcare_1_eccpr_o3.dat10/02/2025rttov_hydrotable_earthcare_eccpr.dat
29/01/2024Y
DPRrtcoef_gpm_1_dpr_o3.dat06/12/2024rttov_hydrotable_gpm_dpr.dat
29/01/2024Y
ESMRrtcoef_nimbus_x_esmr_o3.dat06/12/2024-
GEMS1rtcoef_oms_1_gems1_o3.dat06/12/2024-
GEMS1 SRFrtcoef_oms_1_gems1_o3_srf.dat10/12/2024-
GMIrtcoef_gpm_1_gmi_o3.dat06/12/2024rttov_hydrotable_gpm_gmi.dat29/01/2024N
GMI SRFrtcoef_gpm_1_gmi_o3_srf.dat10/12/2024As above
HSBrtcoef_eos_2_hsb_o3.dat06/12/2024-
ICIrtcoef_metopsg_2_ici_o3.dat06/12/2024rttov_hydrotable_metopsg_ici.dat29/01/2024N
ICI SRFrtcoef_metopsg_2_ici_o3_srf.dat10/12/2024As above
JIHENGrtcoef_jiheng_1_jiheng_o3f.dat06/12/2024rttov_hydrotable_jiheng_jiheng.dat13/03/2024N
JIHENG SRFrtcoef_jiheng_1_jiheng_o3_srf.dat10/12/2024As above
MADRASrtcoef_meghatr_1_madras_o3.dat06/12/2024rttov_hydrotable_meghatr_madras.dat29/01/2024N
MHSrtcoef_noaa_xx_mhs_o3.dat
rtcoef_metop_x_mhs_o3.dat
06/12/2024rttov_hydrotable_noaa_mhs.dat
rttov_hydrotable_metop_mhs.dat (rename/copy noaa file)
29/01/2024N
Microsat2b MHSrtcoef_micro2b_0_mhsm2b_o3.dat06/12/2024rttov_hydrotable_micro2b_mhsm2b.dat29/01/2024N
Microsat2b MHS SRFrtcoef_micro2b_0_mhsm2b_o3_srf.dat10/12/2024As above
MIRASrtcoef_smos_1_miras_o3.dat06/12/2024rttov_hydrotable_smos_miras.dat13/12/2024N
MSUrtcoef_noaa_xx_msu_o3.dat06/12/2024-
MTVZA-GYrtcoef_meteor-m_2_mtvzagy_o3.dat06/12/2024rttov_hydrotable_meteor-m_mtvzagy.dat29/01/2024N
MWHSrtcoef_fy3_x_mwhs_o3.dat06/12/2024rttov_hydrotable_fy3_mwhs.dat29/01/2024N
FY-3C/D MWHS2rtcoef_fy3_x_mwhs2_o3.dat06/12/2024rttov_hydrotable_fy3_mwhs2.dat29/01/2024N
FY-3E/F MWHS2rtcoef_fy3_x_mwhs2e_o3.dat06/12/2024rttov_hydrotable_fy3_mwhs2e.dat29/01/2024N
FY-3E/F MWHS2 SRFrtcoef_fy3_x_mwhs2e_o3_srf.dat17/12/2024As above
MetopSG MWIrtcoef_metopsg_2_mwi_o3.dat06/12/2024rttov_hydrotable_metopsg_mwi.dat23/02/2024N
WSF-M MWIrtcoef_wsfm_1_wsfmmwi_o3.dat06/12/2024-
WSF-M MWI SRFrtcoef_wsfm_1_wsfmmwi_o3_srf.dat28/01/2025-
MWRrtcoef_ers_x_mwr_o3.dat
rtcoef_envisat_1_mwr_o3.dat
rtcoef_sentinel3_1_mwr_o3.dat
06/12/2024rttov_hydrotable_ers_mwr.dat
rttov_hydrotable_envisat_mwr.dat (rename/copy ers file)
rttov_hydrotable_sentinel3_mwr.dat (rename/copy ers file)
29/01/2024N
FY3 MWRIrtcoef_fy3_x_mwri_o3.dat06/12/2024rttov_hydrotable_fy3_mwri.dat29/01/2024N
FY3 MWRI2rtcoef_fy3_6_mwri2_o3.dat06/12/2024rttov_hydrotable_fy3_mwri2.dat23/02/2024N
FY3 MWRI2 SRFrtcoef_fy3_6_mwri2_o3_srf.dat10/12/2024As above
FY3 MWRI-RMrtcoef_fy3_7_mwrirm_o3.dat06/12/2024rttov_hydrotable_fy3_mwrirm.dat23/02/2024N
FY3 MWRI-RM SRFrtcoef_fy3_7_mwrirm_o3_srf.dat10/12/2024As above
HY2 MWRIrtcoef_hy2_1_hy2mwri_o3.dat06/12/2024-
MWSrtcoef_metopsg_1_mws_o3.dat06/12/2024rttov_hydrotable_metopsg_mws.dat29/01/2024N
MWS SRFrtcoef_metopsg_1_mws_o3_srf.dat10/12/2024As above
MWTSrtcoef_fy3_x_mwts_o3.dat06/12/2024rttov_hydrotable_fy3_mwts.dat29/01/2024N
MWTS2rtcoef_fy3_x_mwts2_o3.dat06/12/2024rttov_hydrotable_fy3_mwts2.dat29/01/2024N
MWTS3rtcoef_fy3_x_mwts3_o3.dat06/12/2024rttov_hydrotable_fy3_mwts3.dat29/01/2024N
MWTS3 SRFrtcoef_fy3_x_mwts3_o3_srf.dat17/12/2024As above
NEMSrtcoef_nimbus_5_nems_o3.dat18/12/2024-
FY3-G PMRrtcoef_fy3_7_fy3pmr_o3.dat06/12/2024rttov_hydrotable_fy3_fy3pmr.dat23/02/2024Y
POLSIRrtcoef_polsir_1_polsir_o3.dat21/01/2025rttov_hydrotable_polsir_polsir.dat29/01/2024N
SAPHIRrtcoef_meghatr_1_saphir_o3.dat06/12/2024rttov_hydrotable_meghatr_saphir.dat29/01/2024N
SCAMSrtcoef_nimbus_6_scams_o3.dat06/12/2024-
SMAPrtcoef_smap_1_smap_o3.dat04/02/2025-
SMMRrtcoef_nimbus_7_smmr_o3.dat06/12/2024-
SSM/Irtcoef_dmsp_xx_ssmi_o3.dat06/12/2024rttov_hydrotable_dmsp_ssmi.dat29/01/2024N
SSMISrtcoef_dmsp_xx_ssmis_o3.dat06/12/2024rttov_hydrotable_dmsp_ssmis.dat29/01/2024N
SSMIS Zeeman (84L)rtcoef_dmsp_xx_ssmis_zeeman.dat16/01/2023As above
SSM/Trtcoef_dmsp_xx_ssmt_o3.dat18/12/2024-
SSM/T2rtcoef_dmsp_xx_ssmt2_o3.dat06/12/2024rttov_hydrotable_dmsp_ssmt2.dat29/01/2024N
TEMPESTrtcoef_tempest_0_tempest_o3.dat
rtcoef_tempest_1_tempest_o3.dat
06/12/2024rttov_hydrotable_tempest_tempest.dat29/01/2024N
TEMPEST SRFrtcoef_tempest_0_tempest_o3_srf.dat
rtcoef_tempest_1_tempest_o3_srf.dat
17/12/2024As above
TMIrtcoef_trmm_1_tmi_o3.dat06/12/2024rttov_hydrotable_trmm_tmi.dat29/01/2024N
TROPICSrtcoef_tropics_x_tropics_o3.dat06/12/2024rttov_hydrotable_tropics_tropics.dat29/01/2024N
TROPICS SRFrtcoef_tropics_x_tropics_o3_srf.dat17/12/2024As above
Windsatrtcoef_coriolis_1_windsat_o3.dat06/12/2024rttov_hydrotable_coriolis_windsat.dat29/01/2024N

NB “NOAA-5” is TIROS-N.

“SRF” refers to coefficients based on measured spectral responses. Where available, coefficients based on measured SRFs are recommended. SRF-based files are unique to specific sensors. Other MW coefficients are based on top-hat (box-car) pass bands and are identical for the same sensor on different platforms. However in some cases, the satellite height and/or channel polarisations may differ between platforms, but these do not affect the gas optical depth coefficients themselves.

Hydrotables, containing hydrometeor optical properties for scattering simulations, are computed at channel nominal central frequencies and are unpolarised. Therefore generally one file is produced per sensor and this can be used for that sensor on all platforms. You can either make copies of the relevant file or use symbolic links.


Reference profiles and regression limits

RTTOV rtcoef coefficients

RTTOV gas optical depth coefficients are trained using a set of diverse profiles which cover a wide range of values for each atmospheric variable. The latest coefficients are trained using diverse profiles which are designed to be applicable to the whole satellite era (1970-202x). H2O is the only gas for which profiles must always be supplied. The v13 predictors introduced in RTTOV v13 support different selections of optional variable trace gases as indicated in the filename and listed below. Note that simulations using a coefficient file with more optional variable gases run slower. Although RTTOV v14 supports all RTTOV v13-compatible ASCII gas optical depth coefficients, only those found on this page are considered non-deprecated.

  • v13 predictors rtcoef_*_o3 : O3 (primarily MW sensors)
  • v13 predictors rtcoef_*_o3co2 : O3 and CO2 (all VIS/IR sensors)
  • v13 predictors rtcoef_*_7gas : O3, CO2, N2O, CO, CH4 and SO2 (selected VIS/IR sensors)

If no optional gas profile is supplied a fixed background profile is used. These fixed profiles are also used in training coefficients for which a particular gas cannot vary. The fixed profile concentrations are contemporary values: when simulating older instruments you may wish to use variable-CO2 coefficients so that you can supply more appropriate CO2 profiles. The fixed background profiles are contained in the following comma-separated value files (gas units are ppmv with respect to dry air). Values are provided for the layers bound by the pressure levels.

The diverse profile set also includes a selection of gases with fixed profiles in all training simulations (the “mixed gases”):

The fast optical depth calculations can be expected to be accurate for input profiles which lie within the profile “envelopes” defined by the minimum and maximum values for each profile variable on each level. By default RTTOV checks the input profile against a set of profile regression limits: it can warn if the regression limits are exceeded or, if the apply_reg_limits option is set to TRUE, clip the values to the limits where the limits are exceeded.

For some time it has been the practice in RTTOV to set the regression limits to +/-10% of the profile envelope for temperature and +/-20% of the profile envelope for each gas. For highly variable gases (such as water vapour) this stretching may be reasonable, but for less variable gases (such as CO2) the limits should probably be closer to the strict min/max envelope. It is planned to investigate and apply more appropriate stretches to the limits for each individual gas. The comma-separated value files below show the stretched limits applied within RTTOV (gas units are ppmv with respect to dry air). Coefficient files contain the strict profile min/max envelopes and the stretched profile limits applied within RTTOV are calculated when the coefficients are read in.

PC-RTTOV

PC-RTTOV coefficients for RTTOV v14 allow all variable trace gases (except SO2). PC-RTTOV is trained on a different set of profiles to the RTTOV optical depth coefficient files. The files linked below give the minimum and maximum temperature and gas limits and surface variables for PC-RTTOV coefficients. These are never enforced in the code, even if the apply_reg_limits option is true. Where any of these limits are exceeded the qflag_reg_limits quality flag is set in radiance%quality(:) for the corresponding predictor channels.

PC-RTTOV coefficients for RTTOV v14 allow aerosol-affected simulations. These are trained using profiles based on the OPAC aerosol components. These PC coefficients must only be used with the OPAC aerosol files (the “fast-only” files are recommended) and you should only specify non-zero concentrations for aerosol indices 1-10 (the components taken from OPAC). The minimum and maximum aerosol concentrations are given below in number density (cm^-3). Among the training profiles the aerosol concentrations did not vary for every type in every layer. Where the minimum and maximum limits are the same there was no variability and RTTOV automatically resets the aerosol concentrations to the values used in the training for those components/layers (which includes layers where there was no aerosol in the training set). If any regression limit is exceeded among the components/layers which varied in the training profiles, the qflag_pc_aer_reg_limits bit is set in radiance%quality(:) for the corresponding predictor channels. Flags are not set if the input aerosol concentration is zero. If the apply_reg_limits option is true, any values falling outside the limits are clipped to the respective minimum or maximum value.

PC-RTTOV coefficients for RTTOV v14 allow hydrometeor-affected simulations. These may be used with any cloud liquid or ice water type available with the NWP SAF VIS/IR hydrotables (see the user guide) including the Baran ice scheme. The “fast-only” hydrotable files are recommended. It is recommended to specify non-zero hydrometeor concentrations for at most one cloud liquid and one cloud ice type in each layer. The minimum and maximum hydrometeor concentrations are given below in density (g.m^-3). Where there were no hydrometeors in the training profiles RTTOV automatically resets the hydrometeor concentrations to zero. If any regression limit is exceeded among the layers which varied in the training profiles, the qflag_pc_hydro_reg_limits bit is set in radiance%quality(:) for the corresponding predictor channels. Flags are not set if the input hydrometeor concentration or corresponding hydro fraction is zero. If the apply_reg_limits option is true, any values falling outside the limits are clipped to the respective minimum or maximum value.