

Document NWPSAF-KN-TV-008 Version 2.1 February 2017

PenWP Test Plan and Test Report

Anton Verhoef, Jur Vogelzang, Jeroen Verspeek and Ad Stoffelen

KNMI, De Bilt, the Netherlands

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

PenWP Test Plan and Test Report

KNMI, De Bilt, the Netherlands

This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement dated 29 June, 2011, between EUMETSAT and the Met Office, UK, by one or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office, ECMWF, KNMI and Météo France.

Copyright 2017, EUMETSAT, All Rights Reserved.

Change r	Change record					
Version	Date	Author / changed by	Remarks			
1.9	May 2015	Anton Verhoef	First version for PenWP beta release			
2.0	Oct 2015	Anton Verhoef	Version for first public PenWP release			
2.0.01	Nov 2015	Anton Verhoef	Modified according to DRI comments			
2.1	Feb 2017	Anton Verhoef	Version for PenWP 2.1			

Contents

С	ONT	ENTS	1
1	I	NTRODUCTION	2
	1.1 1.2 1.3 1.4 1.5	AIMS AND SCOPE Development of PenWP Testing PenWP, traceability matrix Test folders Conventions.	3 3 4
2	N	10DULE TESTS	6
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	Module SingletonFFT Module SortMod	7 8 9 11 12 12 14 15 15 16 17
3		ENWP INTEGRATION TEST	
	3.1	OSCAT TEST DATA	
4	V	ALIDATION TESTS	
	4.1 4.2 4.3	PENWP WINDS VERSUS ECMWF WINDS ICE SCREENING TEST NBEC TEST	28
5	Р	ORTABILITY TESTS	30
6	U	SER DOCUMENTATION TESTS	31
R	EFEF	RENCES	32
A	PPEN	NDIX A: ACRONYMS	33

1 Introduction

This document is the test plan and test report for the Pencil beam Wind Processor (PenWP) software package. It is set up according to the guidelines of the NWP SAF; see the NWP SAF Development Procedures for Software Deliverables. Parts of the PenWP developments are in fact genscat developments. The tests for genscat modules are also included in this document. Part of the test plan is a traceability matrix to show how requirements as described in the Product Specification [2] are related to the tests in this document.

Most of the module tests described in this document have been developed and performed for OWDP (the OSCAT Wind Data Processor), AWDP (the ASCAT Wind Data Processor) and SDP (the SeaWinds Data Processor) a large part of the code in genscat is shared between PenWP and other NWP SAF wind processors. For this new PenWP version, all module tests have been repeated.

1.1 Aims and scope

The Pencil Beam Wind Processor (PenWP) is a software package written mainly in Fortran 90 with some parts in C for handling data from the SeaWinds (on QuikSCAT or ADEOS-II), OSCAT (on Oceansat-2 or ScatSat-1), HSCAT (on HY-2A) and RapidScat (on the International Space Station) scatterometer instruments. Details of these instruments can be found in [4] and [5], respectively, and on several web sites, see e.g. information on the NASA and ISRO web sites. PenWP is intended to be a generic wind processor for Ku band pencil beam scatterometer data. It will be adapted to handle data from future instruments like the OSCAT successor ScatSAT (from ISRO) once they become available.

PenWP generates surface winds based on pencil beam radar backscatter data. It allows performing the ambiguity removal with the Two-dimensional Variational Ambiguity Removal (2DVAR) method and it supports the Multiple Solution Scheme (MSS). The output of PenWP consists of wind vectors which represent surface winds within the ground swath of the scatterometer. Input of PenWP is Normalized Radar Cross Section (NRCS, σ^0) data. These data may be near real-time. The input files of PenWP are in BUFR. Conversion programs are included in the package to convert Hierarchical Data Format (HDF5) data from various instruments to BUFR. Output is written using the SeaWinds BUFR template or the KNMI BUFR template with generic wind section.

Depending on the grid spacing of the BUFR product, PenWP will process the data on 25 km, 50 km or 100 km grid spacing. The SeaWinds/RapidScat HDF5 to BUFR converter can create BUFR data on 25, 50 or 100 km grid spacing by averaging the backscatter data in the level 2a input file to the requested gridding. The OSCAT HDF5 to BUFR converter will create BUFR data with the same grid spacing as the level 2a input file. This can be 50 km when using the level 2a input data from the Indian Space Research Organisation (ISRO), or 25 km when using level 1b

input data from ISRO in combination with a separate OSCAT level 1b to level 2a converter which is also included in the software package and which is based on software provided by NOAA. HY-2A input data are currently available on 25 km grid spacing but can also be averaged to a 50 km product.

Apart from the scatterometer input data, PenWP needs Numerical Weather Prediction (NWP) model winds as a first guess for the Ambiguity Removal step. These data need to be provided in GRIB edition 1 or 2.

1.2 Development of PenWP

PenWP is developed within the Numerical Weather Prediction Satellite Application Facility (NWP SAF) and Ocean and Sea Ice Satellite Application Facility (OSI SAF) projects as code which can be run in an operational setting. The coding is mainly in Fortran 90 with some parts in C and has followed the procedures specified for the NWP SAF. Special attention has been paid on robustness and readability. PenWP may be run on every modern Unix or Linux machine. In principle, PenWP can also be run on a Windows machine if a Linux environment like the Windows Installer for Ubuntu (Wubi) is installed. Details on the PenWP package can be found in [1], [2] and [3].

1.3 Testing PenWP, traceability matrix

This section describes the Test Plan of the PenWP deliverable. Tests have been carried out in all stages of the development of PenWP. The inversion module is not tested for the PenWP package, because such a test has already been made for the QuikSCAT Data Processor (QDP) development. PenWP contains several methods for Ambiguity Removal within module *ambrem* and its sub modules. Only modules needed for the KNMI 2DVAR scheme for Ambiguity Removal are tested within this project.

Compilation is done on several platforms (operating systems) and with different Fortran 90 compilers. The integration and validation tests were done on both a Linux work station and a Linux server environment.

Section 2 contains the tests for a number of individual modules. In general, modules are tested with the associated test programs that are located in the folder containing the module under consideration. The output of the test programs is always the standard output (screen) which may be redirected to any test log file or to some output files which are stored in the associated folders. Section 3 describes the PenWP integration test. A test folder containing some sample data is provided with PenWP and some of the resulting wind fields from these data are shown. Section 4 discusses the validation tests. PenWP has been compared with ECMWF model winds in the scope of this report, buoy validations are or will be performed in the scope of the OSI SAF. Section 4 also contains a technical check of the ice screening algorithm. Section 5 describes the portability tests. It contains an overview of platform/operating systems and Fortran and C compilers for which PenWP is supported. Finally, section 6 is devoted to testing the user documentation.

The table below is the traceability matrix. It shows the requirements in the Product Specification [2], how they are tested and where in this report these tests are described.

PenWP Test Plan and Test Report

Requirement	Section of PS	Testing method	Test plan reference (section)	Comment
PenWP generates surface winds	2.1, 3.5, 3.7	Process L2A file in penwp/test folder and inspect output	3.1	
PenWP generates BUFR output in NOAA format and in KNMI format	2.1, 3.1	Process L2A file in penwp/test folder and inspect output	3.1	
PenWP generates output in the same WVC spacing as the input data	2.2, 3.2	Process L2A file in penwp/test folder and inspect output	3.1	
PenWP output contains latitude, longitude and other parameters	2.2	Process L2A file in penwp/test folder and inspect output	3.1	
PenWP can use either L2A HDF5 data or BUFR data as input (HDF5 after conversion to BUFR)	2.3	Process L2A HDF5 data in penwp/test folder and subsequently reprocess BUFR output	3.1	
PenWP reads GRIB data containing LSM, SST and forecast winds	2.3	Process L2A file in penwp/test folder and check that a consistent wind field is obtained	3.1	
PenWP will compile and run on different Linux and Unix platforms	2.4	Compile and run PenWP on different platforms	5	
L2A backscatter slices are averaged correctly, unusable backscatter data are rejected.	3.2	Process a few orbits of L2A data and compare output winds to ECMWF background.	4.1	When averaging is not done well, a noisy or inconsistent wind field is obtained. This is reflected in the statistics of scatterometer winds vs. ECMWF.
Atmospheric attenuations are computed and stored in output	3.3	Process L2A file in penwp/test folder and inspect output	3.1	Atmospheric attenuations should be in the order of 0.2 to 0.3 dB
WVCs with high MLEs must be rejected by Quality Control	3.4	Process L2A file in penwp/test folder and check if QC flag is set for high MLE values	3.1	
Bayesian ice screening is implemented	3.6	Process a few orbits of L2A data and inspect ice maps	4.2	
A product monitoring flag is implemented	3.8	Not tested since there are no data with anomalous instrument performance available	-	
PenWP can process data within reasonable CPU time.	3.9	Process L2A file in penwp/test folder and check processing time.	3.1	

Table 1.1Traceability matrix.

1.4 Test folders

The Test folder of the PenWP software package is located in subdirectory penwp/tests. This

subdirectory contains several input files for PenWP that are discussed in more detail in section 3. The scripts for executing these tests are located in directory penwp/execs. It is recommended to use these scripts (or a modified version) also for normal PenWP operation, as the environment variables needed by PenWP are set in these scripts.

As stated before, most test programs are located in the same directory as the module to be tested. See section 2 for detailed information.

1.5 Conventions

Names of physical quantities (e.g., wind speed components u and v), modules (e.g. *BufrMod*), subroutines and identifiers are printed italic.

Names of directories and subdirectories (e.g. penwp/src), files (e.g. penwp.F90), and commands (e.g. penwp -f input) are printed in Courier. Software systems in general are addressed using the normal font (e.g. PenWP, genscat).

Hyperlinks are printed in blue and underlined (e.g. http://www.knmi.nl/scatterometer/).

2 Module tests

In this section the various tests to individual modules within PenWP are presented. The tests are listed alphabetically in the module name. Table 2.1 gives an overview of the modules tested, their location and the name of the associated test programs.

Module tests have been included in PenWP if the following conditions were satisfied:

- 1. The test does not require additional software.
- 2. The output of the test program is self-explanatory enough to judge the outcome of the test.

Module name	Location	Test program
BFGSMod	genscat/support/BFGS	Test_BFGS
BufrMod	genscat/support/bufr	test_modules
convert	genscat/support/convert	test_convert
CostFunction	genscat/ambrem/twodvar	Test_SOS
StrucFunc	genscat/ambrem/twodvar	Test_SOS
DateTimeMod	genscat/support/datetime	TestDateTimeMod
ErrorHandler	genscat/support/ErrorHandler	TestErrorHandler
gribio_module	genscat/support/grib	test_read_GRIB1, test_read_GRIB2,
		test_read_GRIB3
HDF5Mod	genscat/support/hdf5	TestHDF5
LunManager	genscat/support/file	TestLunManager
numerics	genscat/support/num	test_numerics
SingletonFFT	genscat/support/singletonfft	TestSingleton
SortMod	genscat/support/sort	SortModTest

Table 2.1 Overview of module tests.

2.1 Module *BFGSMod*

Directory genscat/support/BFGS contains program Test_BFGS. This program tests the minimization routine LBFGS and its associated routines in module *BFGSMod*. The routines in *BFGSMod* are slightly modified versions of the freeware routine LBFGS and its subroutines. LBFGS was written by J. Nocedal, see [6].

Program Test_BFGS finds the minimum of the function

$$f(x) = \sum_{i=1}^{100000} (x-i)^4$$

The minimum is the point (1, 2, ..., 100000). The search starts at the origin. The typical output is shown in table 2.2.

Program Test_BFGS testing routine LBFGS

Behav Iter	our of cost function: Cost		
	0.20001E+25		
1	0.19527E+25		
2	0.17724E+25		
84	0.29492E-15		
85	0.95608E-16		
86	0.30995E-16		
Routi	ne LBFGS completed succesfully		
Num	ber of iterations	:	87
Dim	ension of problem	:	100000
Num	ber of corrections in BFGS update	:	5
Cos	t function at start	:	0.20001D+25
Cos	t function at end	:	0.30995D-16
Pre	cision required	:	0.10D-19
Nor	m of final X	:	0.18258D+08
Nor	m of final G	:	0.97625D-13
Min	imum and Maximum error in solution	:	0.000003 0.000005
Tim	e needed	:	0.460 seconds
Progr	am Test_BFGS completed succesfully.		

Table 2.2 Output of program Test_BFGS.

2.2 Module *BufrMod*

Directory genscat/support/bufr contains program *test_modules*. This program is compiled and called automatically by the genscat make system, since it is needed to translate the ASCII BUFR tables to binary form. It will also read in a small BUFR test file, decode it, encode the data again and write them to an output BUFR file. Hence, the program can be used to check the BUFR library. Table 2.3 shows the output generated by *test_modules*. The program can be invoked by calling the shell script *run_test_modules*, which sets the environment variable \$BUFR_TABLES and calls *test_modules*.

```
nr of BUFR messages in this file is:
                                         1
                   ECMWE
      BUFR DECODING SOFTWARE VERSION - 403
 Your path for bufr tables is :
 ./bufr_tables/
BUFR TABLES TO BE LOADED B000000000210000001.TXT,D000000000210000001.TXT
 tbd%nelements =
                            44
 pos_lat =
                      25
 pos_lon =
                      26
                     -3.630000
                                      1.260000
 latitude range:
 longitude range:
                      2.850000
                                      7.690000
                   ECMWF
      BUFR ENCODING SOFTWARE VERSION - 7.2
            1 April 2007.
 Your path for bufr tables is :
 ./bufr_tables/
BUFR TABLES TO BE LOADED B000000000210000001.TXT,D000000000210000001.TXT
```

 Table 2.3
 Output of program test_modules.

2.3 Module *convert*

Directory genscat/support/convert contains module *convert.F90*, a number of routines for the conversion of meteorological and geographical quantities. Its associated test program is *test_convert*, and part of its output is listed in table 2.4. Program *test_convert* produces quite a lot of output.

It starts with checking some conversions between different wind vector representations and transformations between different geographical coordinate systems, followed by a check of the transformation from orbit angles (p,a,rot(z)) to three-dimensional position (x,y,z).

Only the results for $p = 0^{\circ}$ and 90° are (partly) shown in table 2.4; those for $p = 10^{\circ}$, 45°, and 70° are omitted. Program *test_convert* ends with some trigonometric calculations on a sphere.

```
-----
u =
                 v = -7.000000
        5.000000
uv_to_speed, uv_to_dir ====> sp =
                                   8.602325
                                                dir =
                                                         324.4623
 8.602325
                             324.4623
sp =
                    dir =
speeddir_to_u, speeddir_to_v ====> u =
                                       5.000002
                                                    v =
                                                          -6.999999
 10.00000
                                     135.0000
met2uv: sp =
                            dir =
met2uv: ====> u =
                   -7.071068
                                         7.071068
                                 v =
uv2met: u = -7.071068
                                   7.071068
                           v =
uv2met: ====> sp =
                  10.00000
                                  dir =
                                           135.0000
 -----
lat,lon = 55.00000
                           5.000000
                                         4.9990479E-02
latlon2xyz: ====> x,y,z =
                           0.5713938
                                                        0.8191521
x,y,z = 0.5713938
                        4.9990479E-02
                                        0.8191521
xyz2latlon: ====>lat,lon =
                            55.00000
                                           5.000000
 -
                       rot z
                                                                   a1
                                                                         rot zl
                                                                                       a2
                                                                                             rot z2
       p
                 а
                                     х
                                                          z
          -90.00000
                                0.00000
                                          0.00000
                                                   -1.00000
                                                                      106.16298
                                                                                270.00000
  0.00000
                                                            -90.00000
                      0.00000
                                                                                            0.00000
  0.00000
          -90.00000
                     15.00000
                                0.00000
                                          0.00000
                                                   -1.00000
                                                            -90.00000
                                                                      105.59795
                                                                                270.00000
                                                                                            9.72975
  0.00000
          -90.00000
                     30.00000
                                0.00000
                                          0.00000
                                                   -1.00000
                                                            -90.00000
                                                                      103.95005
                                                                                270.00000
                                                                                           27.91061
  0.00000
          -90.00000
                     45.00000
                                0.00000
                                          0.00000
                                                   -1.00000
                                                            -90.00000
                                                                      101.35209
                                                                                270.00000
                                                                                           43.81981
  0.00000
          -90.00000
                     60.00000
                                0.00000
                                          0.00000
                                                   -1.00000
                                                            -90.00000
                                                                       98.00070
                                                                                270.00000
                                                                                           59.32336
                                                   -0.17365
  0.00000
          -10.00000
                      0.00000
                                0.98481
                                          0.00000
                                                            -10.00000
                                                                        0.00000
                                                                                190.00000
                                                                                          180.00000
          -10.00000
                                                                                 190.00000 -164.99998
  0.00000
                     15.00000
                                0.95125
                                          0.25489
                                                   -0.17365
                                                            -10.00000
                                                                       15.00000
          -10.00000
                                                                                190.00000 -149.99998
  0.00000
                     30.00000
                                0.85287
                                          0.49240
                                                   -0.17365
                                                            -10.00000
                                                                       30.00000
 90.00000
           45.00000
                     30.00000
                                0.25882
                                          0.96593
                                                    0.00000
                                                             74.99999
                                                                        0.00000
                                                                                105.00000
                                                                                            0.00000
 90.00000
           45.00000
                     45.00000
                                0.00000
                                          1.00000
                                                    0.00000
                                                             90.00000
                                                                        0.00000
                                                                                 90.00000
                                                                                            0.00000
 90.00000
           45.00000
                     60.00000
                               -0.25882
                                          0.96593
                                                    0.00000
                                                             74.99999
                                                                        0.00000
                                                                                 105.00000
                                                                                            0.00000
 90.00000
                                                    0.00000
                                                             90.00000
           90.00000
                      0.00000
                               0.00000
                                          1.00000
                                                                        0.00000
                                                                                 90.00000
                                                                                            0.00000
                     15.00000
                                                                                105.00000
 90.00000
           90.00000
                                                    0.00000
                                                                        0.00000
                               -0.25882
                                          0.96593
                                                             74,99999
                                                                                            0.00000
 90.00000
           90.00000
                     30.00000
                               -0.50000
                                          0.86603
                                                    0.00000
                                                             59.99999
                                                                        0.00000
                                                                                 120.00000
                                                                                            0.00000
 90.00000
           90.00000
                     45.00000
                               -0.70711
                                          0.70711
                                                    0.00000
                                                             45.00000
                                                                        0.00000
                                                                                135.00000
                                                                                            0.00000
 90.00000
           90.00000
                     60.00000
                               -0.86603
                                          0.50000
                                                    0.00000
                                                             30.00000
                                                                        0.00000
                                                                                149.99998
                                                                                            0.00000
 latlon1 =
             5.000000
                            5.000000
                                        latlon2 =
                                                    6.000000
   5.000000
angle distance =
                    1.000000
              =
km distance
                   111.3188
             55.00000
                            5.000000
                                        latlon2 =
                                                    56,00000
latlon1 =
   5.000000
                    1.000000
 angle distance =
                   111.3188
km distance
              =
             85.00000
                            5.000000
                                        latlon2 =
                                                    86.00000
latlon1 =
   5.000000
 angle distance =
                   1.000000
                   111.3188
km distance =
 ______
latlon1 =
             5.000000
                           5.000000
                                       latlon2 =
                                                    5.000000
   6.000000
 angle distance =
                   0.9961947
km distance
                   110.8952
              =
```

	NWP SAF	PenWP	Fest Plan a Report	nd Test	Doc ID Version Date	: NWPSAF-KN-TV-008 : 2.1 : February 2017	
km dista			<pre>latlon2 = latlon2 =</pre>	55.00000			
km dista	000 stance = 8.7155804 nce = 9.702084		-				
WVC1 co WVC2 co WVC1 or	_Orientation oordinates (Laml,Phil oordinates (Lam2,Phi2 rientation Alfal = rientation Alfa2 =	<pre>1) = -123.650 173.5995</pre>	00 -17.5 (Should eq				

 Table 2.4
 Output of program test_convert

2.4 Modules *CostFunction* and *StrucFunc*

Module *CostFunc.F90* in directory genscat/ambrem/twodvar contains the cost function definition of the 2DVAR method. Module *StrucFunc* in the same directory contains the error covariance model of the background field. Large parts of these modules are tested in the single observation solution test implemented in program *Test_SOS*. Table 2.5 lists its output.

The main idea behind this test is that the 2DVAR analysis increment can be calculated analytically in case of one single observation with unit probability. Starting with zero background increment and an observation increment (t_o , l_o) on the 2DVAR grid at the position with indices (1,1), the initial total cost function equals

$$J_t^{init} = \frac{t_o^2 + l_o^2}{\varepsilon^2}$$

where ε stands for the standard deviation of the observation error, which is set to 1.8 in *Test_SOS*. The 2DVAR problem now reduces to a simple optimal interpolation problem. If the standard deviation of the background error is set to the same value as that of the observation error, the final solution has $J_t^{fin} = J_o^{fin} + J_b^{fin} = \frac{1}{2} J_t^{init}$ with $J_b^{fin} = J_o^{fin}$. This allows construction of the final solution and its gradient, see [7] for more detailed information and a complete description of the 2DVAR method.

Program *Test_SOS* reads the observation increment and the structure function parameters from an input file with default name *Test_SOS.inp*, see below. There are two modes for calculating the Helmholz transformation coefficients, controlled by the variable *Mode* in routine *Set_HelmholzCoefficients* in module *CostFunc.F90*. Mode is a character variable of length 2. Its default value is '*JV*' which stands for sampled continuum (the other value is '*HB*' which stands for periodic boundary conditions but these do not reproduce the correct scaling, see [7] for more details). The program copies the structure function parameters into the *SF*-struct, and the observation increments in the *TwoDvarObs*-struct. The structure function parameters are printed by routine *PrnStrucFuncPars*.

The error covariances are calculated numerically in module *StrucFunc*. For Gaussian structure functions, they can also be calculated analytically. The two methods are compared and the relative precision is printed. In table 2.5 it is 0.00345 for the stream function ψ and 0.0 for the velocity

potential χ , since the latter quantity is identically zero in this example. The precision of the covariances depends on the correlation lengths R_{ψ} and R_{χ} .

The total cost function and its gradient is evaluated by routine *JoScat* in module *CostFunction*. From this the cost function components and gradients at the final solution are calculated and checked against their analytical value. The (absolute) precision is printed. Finally, *Test_SOS* checks the packing and unpacking routines of the control vector in both directions.

As stated before, program *Test_SOS* reads its input from an input file. The name (and path) of that file must be given as command line argument of *Test_SOS*. When omitted, the program assumes Test_SOS.inp as input file. Table 2.6 gives the structure and contents of the input file, which is in free format. The last decimals of the output values may depend on machine precision.

PROGRAM Test_SOS - Single Observation Soluton Check Input read from file : Test_SOS.inp Helmholz coefficients type : JV 2DVAR: 2DVAR: Parameters inside the StructFunc module: 2DVAR: Grid size in position domain : 100000.0 m 32 by 2DVAR: Grid dimensions : 32 2DVAR: Free edge size : 5 points 2DVAR: Free edge size : 2DVAR: Structure function type : Gaus 2DVAR: Northern hemisphere: Error standard deviation in psi : 1.800000 2DVAR: m/s 2DVAR: Error standard deviation in chi : 1.800000 m/s Rotation/divergence ratio : Range parameter for psi : 2DVAR: 1.000000 2DVAR: Range parameter for psi 300000.0 2DVAR: Range parameter for chi : 300000.0 2DVAR: Tropics: 2DVAR: Error standard deviation in psi : 2.000000 m/s 2DVAR: Error standard deviation in chi : 2.000000 m/s 2DVAR:Rotation/divergence ratio2.0000002DVAR:Range parameter for psi300000.02DVAR:Range parameter for chi300000.0 Range parameter for chi 300000.0 2DVAR: Southern hemisphere: 2DVAR: -1.000000 Error standard deviation in psi : m/s Error standard deviation in chi : 2DVAR: 76.00000 m/s 2DVAR: Rotation/divergence ratio : 0.000000 2DVAR: Range parameter for psi 1.800000 2DVAR: Range parameter for chi : 1.800000 CheckCovMat - checking precision of Covariances Relative precision in covariances of psi: 3.3184644E-04 Relative precision in covariances of chi: 2.7596165E-04 Number of observations : 1 2046 Number of control variables : Obs2dvar after initialization: i j Namb u v Jo gu gv _____ 1 1.0 0.0 0.00000E+00 0.00000E+00 0.00000E+00 The gradient velocity fields duo and dvo (nonzero components only): duo dvo i j _____ The cost function of the solution: Observation part : 0.000000 Background part : 0.00000 precision 0.000000 The background velocity field:

u(1,1) : 0.000000 Expected value : 0.5000000	precision	0.500000	
v(1,1) : 0.000000 Expected value : 0.000000	precision	0.00000	
- Check background cost function	-		
Direct calculation from psi and chi	: 0.000000		
Calculation by Jb from control vector	: 0.000000	precision	0.00000
Check observation cost function			
Expected value	: 0.000000		
Calculation by Jo from control vector		precision	0.000000
Precision in gradients better than	1.9753901E-10		
Check packing/unpacking:			
Precision in packing/unpacking of xi			
Precision in packing/unpacking of psi			
Precision in packing/unpacking of chi	0.00000		
Program Test_SOS completed.			
	=======================================	=====	

Table 2.5 Output of the single observation solution test.

Record	Item nr.	Name	Meaning
1	1	u0_ini	Initial observation increment in transversal direction (m/s)
1	2	v0_ini	Initial observation increment in longitudinal direction (m/s)
2	1	lparameter	Logical parameter indicating if 2DVAR parameters should
			be read from file
3	1	TDVParameterFile	Name of 2DVAR parameter file

Table 2.6Input file for *Test_SOS*.

2.5 Module DateTimeMod

Module *DateTimeMod.F90* in directory genscat/support/datetime contains general purpose date and time help functions. These are tested by program *TestDateTimeMod*, the output of which is listed in table 2.7.

```
time-tests
time: 14:22:03.70
                = 51723.70
time_real
time_{real} + 77.2 = 51800.90
time: 14:23:20.90
time2 is valid
 time1 =
time: 14:22:03.70
 time2 =
time: 14:23:20.90
 time 1 .ne. time2
 date-tests
date: 15-12-1999
               19991215
date_int =
date_int + 1 = 
                     19991216
date: 16-12-1999
date2 is valid
date1 =
date: 15-12-1999
 date2 =
date: 16-12-1999
date 1 .ne. date2
 date-stepping-tests
                      21000101 is outside the range
 ERROR: The date
 19000101...20991231, this is not implemented at this time
 ERROR: Julian routines differ from my own routines
date: 31-12-2099
```

```
next_date_int =
                    2147483647
date: 01-01-2100
next_julian_date_int =
                             21000101
 all OK
before:
time: 23:59:57.70
date: 31-12-1999
after incrementing by: 5.22 seconds
time: 00:00:02.92
date: 01-01-2000
 valid time
 test of function date2string: 19991231
 test of function date2string_sep: 1999-12-31
 test of function time2string: 235957
 test of function time2string sep: 23:59:57
before convert_to_derived_datetime:
date: 28-02-2005
time: 52:00:00.00
after convert_to_derived_datetime:
date: 02-03-2005
time: 04:00:00.00
 Current date and time:
date: 16-04-2015
time: 09:20:37.13
```

Table 2.7 Output of program *TestDateTimeMod*.

2.6 Module *ErrorHandler*

Module *ErrorHandler.F90* in directory genscat/support/ErrorHandler contains routines for handling errors during program execution. The module is tested by program *TestErrorHandler*, the output of which is listed in table 2.8.

```
The Error Handler program_abort routine is set to
return after each error,
in order to try and resume the program...
testing: report_error
an error was reported from within subroutine: dummy_module_name1
error while allocating memory
testing: program_abort (with abort_on_error = .false.)
an error was reported from within subroutine: dummy_module_name2
error while allocating memory
==> trying to resume the program ...
The Error Handler program_abort routine is set to
abort on first error...
testing: program_abort (with abort_on_error = .true.)
an error was reported from within subroutine: dummy_module_name2
error while allocating memory
```

Table 2.8 Output of program TestErrorHandler.

2.7 Module gribio_module

Module gribio_module.F90 in directory genscat/support/grib contains routines for reading and decoding GRIB files. The module is tested by programs test_read_GRIB1, test_read_GRIB2 and test_read_GRIB3, the output of which is listed in tables 2.9 to 2.11. The test programs read in two small GRIB files (testfile.grib in GRIB edition 1 format and testfile.grib2 in GRIB edition 2 format) present in this directory and print some of their contents to the standard output. The environment variable \$GRIB_DEFINITION_PATH needs to be set and has to point to the directory containing GRIB definition tables. These are available in (...)/genscat/support/grib/definitions.

open GRI	B editio	on 1 file		
file nam	ne = ./te	estfile.gril	b	
date of	grib fie	eld =	20	031111
time of	grib fie	eld =		24
derived	date of	grib field	= 20	031112
derived	time of	grib field	=	0
lat	lon	10u	10v	speed
54.00	4.00	-4.576	8.006	9.221
54.00	4.50	-5.143	7.764	9.313
54.00	5.00	-5.034	7.520	9.050
54.00	5.50	-4.925	7.276	8.786
54.50	4.00	-4.849	8.455	9.747
54.50	4.50	-5.139	8.315	9.775
54.50	5.00	-5.200	8.426	9.902
54.50	5.50	-5.261	8.537	10.028
55.00	4.00	-5.267	8.577	10.065
55.00	4.50	-5.398	8.454	10.031
55.00	5.00	-5.416	8.620	10.180
55.00	5.50	-5.434	8.786	10.330
55.50	4.00	-5.686	8.699	10.392
55.50	4.50	-5.657	8.594	10.289
55.50	5.00	-5.632	8.814	10.459
55.50	5.50	-5.606	9.034	10.632
open GRI	B editio	on 2 file		
file nam	ne = ./te	estfile.gril	b2	
date of	grib fie	eld =	20	031111
time of	grib fie	eld =		24

End of tests

Table 2.9	Output of program <i>test_read_GRIB1</i> .	
-----------	--	--

retriev	ve gr	rib field par	r_i	.d_t		
lat of	firs	st gridpoint	=	89.142		
lat ste	ep		=	-1.121		
number	of l	at points	=	160		
lon of	firs	st gridpoint	=	0.000		
lon ste	ep		=	1.125		
number	of l	on points	=	320		
i	j	field(i,j)				
80	160	302.663				
80	161	302.445				
80	162	302.148				
80	163	301.560				
81	160	301.999				
81	161	302.298				
81	162	301.808				
81	163	301.708				
82	160	302.056				
82	161	302.117				
82	162	301.490				
82	163	301.888				
83	160	302.214				
83	161	302.001				
83	162	301.796				
83	163	302.361			 	

Table 2.10 Output of program *test_read_GRIB2*.

retrieve grib field par_id_10u
date of grib field = 20031111
time of grib field = 24
WARNING: latitude dimension of field is too small to contain
WARNING: the read data; truncating the array !!!!!
original: nr lat points = 160
truncated: nr lat points = 50
WARNING: longitude dimension of field is too small to contain
WARNING: the read data; truncating the array !!!!!
original: nr lon points = 320
truncated: nr lon points = 50
i j field(i,j)
48 48 -0.414
48 49 0.477
48 50 -0.111
49 48 3.330
49 49 2.899
49 50 3.252
50 48 3.503
50 49 2.408
50 50 3.212

Table 2.11 Output of program test_read_GRIB3.

2.8 Module HDF5Mod

Module *HDF5Mod.F90* in directory genscat/support/hdf5 contains routines for reading and writing HDF5 files. It is tested by program *TestHDF5*, the output of which is listed in table 2.12. The test program reads in a small HDF5 file called deflate.h5 and displays some of its contents. After that, it creates a file called testfile.h5 and writes some data into it. Its contents can be checked e.g. with the command line utility h5dump.

```
Successfully opened file deflate.h5 with f_id
                                                  67108864
Successfully opened dataset //Dataset1 with d_id
                                                    335544320
Successfully closed dataset with d_id
                                         335544320
Successfully opened group / with g_id
                                         134217728
Successfully opened dataset Dataset1 with d_id
                                                  335544321
Number of datapoints of dataset
                                                        20000
                                  335544321 is
First data values are:
      0
             1
                      2
                              3
                                      4
                                              0
                                                      1
                                                              2
                                                                       3
                                                                               4
      0
             1
                      2
                              3
                                      4
                                              0
                                                      1
                                                              2
                                                                      3
                                                                               4
Successfully closed dataset with d_id
                                         335544321
Successfully closed group with g_id
                                       134217728
Successfully closed file with f_id
                                       67108864
End of file reading tests in TestHDF5
Successfully opened file testfile.h5 with f_id
                                                   67108865
Successfully created group Group1 with g_id 134217729
Successfully wrote Attribute Attribute1 in group
                                                   134217729
Successfully wrote Dataset Dataset1_int_1d in group
                                                       134217729
Successfully wrote Dataset Dataset2_int_2d in group
                                                       134217729
Successfully wrote Dataset Dataset3_float_1d in group
                                                         134217729
Successfully wrote Dataset Dataset4_float_2d in group
                                                         134217729
Successfully wrote Dataset Dataset5_string_1d in group
                                                          134217729
Successfully closed group with g_id
                                       134217729
Successfully closed file with f_id
                                       67108865
End of file writing tests in TestHDF5
A HDF5 file called testfile.h5 was created
You can check its contents e.g. using the h5dump utility
End of TestHDF5
```

Table 2.12 Output of program *TestHDF5*.

2.9 Module LunManager

Module *LunManager.F90* in directory genscat/support/file contains routines for file unit management. It is tested by program *TestLunManager*, the output of which is listed in table 2.13.

```
Starting fileunit test program
 ===== lun_manager ======
 fileunit:
                      31 was not in use !!!
 free_lun returns without freeing any fileunit
                   88 was not in the range that is handled
fileunit:
by this module ! (
                              30 -
                                                39)
 free_lun returns without freeing any fileunit
                     88 was not in the range that is handled
fileunit:
by this module ! (
                               30
                                                39 )
fileunit: 88 was not in the range that is handled
by this module ! ( 30 -
disable_lun returns without disabling any fileunit
rileunit: 21 was not in the range that is handled
by this module ! ( 30 -
 disable_lun returns without disabling any fileunit
         31 is used?:
unit:
                                  F
 unit:
                  31 is used?:
                                   Т
 start of inspect_luns
 lun
                  0 is open
                  0 has a name: stderr
  lun
                  5 is open
 lun
 lun
                  5 has a name: stdin
                  6 is open
  lun
                  6 has a name: stdout
 lun
                 31 is open
31 has a name: TestLunManager.F90
 lun
 lun
 end of inspect_luns
                      31 is still in use !
 fileunit:
 disabling it is only possible if it is not used !
 disable_lun returns without disabling any fileunit
 fileunit:
                      30 is in use
                      31 is in use
 fileunit:
                     32 is still available
33 is still available
 fileunit:
fileunit:
                     34 is still available
35 is still available
 fileunit:
 fileunit:
                     36 is still available
 fileunit:
                     37 is still available38 is still available
 fileunit:
 fileunit:
                     39 is still available
 fileunit:
 fileunit:
                      21 was not in the range that is handled
by this module ! (
                              30 -
                                                39)
 enable_lun returns without enabling any fileunit
 fileunit:
                      22 was not in the range that is handled
by this module ! (
                               30 -
                                                39)
enable_lun returns without enabling any fileunit
```

Table 2.13 Output of program TestLunManager.

2.10 Module *Numerics*

Module *numerics.F90* in directory genscat/support/num contains routines for checking and handling numerical issues like variable sizes and ranges. These are tested by program *test_numerics*, the output of which is listed in Table 2.14.

Starting numerics	test progr	am	
===== representat	ion tests =	=====	
REALACC(6)			
r4: digits	24	L	
r4: epsilon	1.1920929E	2-07	
r4: huge	3.4028235E	2+38	
r4: minexponent	-125		
r4: maxexponent	128		
r4: precision	6		
r4: radix	2		
r4: range	37		
r4: tiny	1.1754944E		
ENDREALACC			
REALACC(12)			
r8: digits	53	1	
r8: epsilon		92503131E-016	
r8: huge		48623167E+308	
r8: minexponent	-1021		
r8: maxexponent	1024		
r8: precision	15		
r8: radix	2		
r8: range	307		
r8: tiny		85072010E-308	
ENDREALACC	2.22507503	000720101 000	
===== numerics te	sts ======		
int1 = 127	505		
int2 = 32767			
int4 = 2147483	647		
int8 = 9223	37203685477	5807	
huge(int1) =	127		
huge(int2) =	32767		
huge(int4) = 2	147483647		
huge(int8) =	922337203	6854775807	
REALACC(6) r4	= 1.7000	000E+38 ENDREALAC	С
REALACC(12) r8		00000000000000E+038	
===== check varia	ble sizes	=====	
Variable sizes ar	e as expect	ed	
===== detect and	print varia	ble sizes ======	
var_type nr_of_wor	ds range pr	recision	
i	4 9		
i1_	1 2		
i2_	2 4		
i4_	4 9		
i8_	8 18		
dr	4 37	6	
s_	4 37	6	
1_	4 37	6	
r_	4 37	6	
r4_	4 37	б	
r8_	8 307	15	
===== dB conversi	on test ===	===	
REALACC(6)		1 0000001 - 04	
input test number	:	1.2300001E-04	
converted to dB:	-	-39.10095	
converted back to	a real:	1.2299998E-04	
ENDREALACC			

Table 2.14Output of program *test_mumerics*.

2.11 Module SingletonFFT

===== done ======

Module *SingletonFFT* in directory genscat/support/singletonfft contains routines for Fast Fourier Transforms. The associated test program is *TestSingleton*. Part of its output is shown in table 2.15.

```
PROGRAM TestSingleton
Test of SingletonFFT routines by comparing with analytical FT
```

Spreading times grid size in dimension 1: 0.1000000 (should be ~ 0.1) Spreading times grid size in dimension 2: 0.1000000 (should be ~ 0.1) _____ 1D FORWARD BACKWARD Precision Precision N1 Real Imag Real Imaq _____ 32 0.83631E-06 0.10286E-04 0.11921E-06 0.69247E-07 34 0.61329E-06 0.78932E-05 0.11921E-06 0.11285E-07 36 0.94782E-06 0.12215E-04 0.11921E-06 0.11036E-06 38 0.27877E-06 0.20358E-05 0.17881E-06 0.22604E-07 40 0.83631E-06 0.12143E-04 0.11921E-06 0.54017E-07 42 0.44603E-06 0.56252E-05 0.77824E-07 0.92940E-07 44 0.12900E-06 0.27819E-06 0.17881E-06 0.14948E-06 46 0.94782E-06 0.13554E-04 0.35763E-06 0.34905E-07 48 0.94782E-06 0.14143E-04 0.23842E-06 0.12666E-06 50 0.50178E-06 0.66967E-05 0.17881E-06 0.10431E-06 _____ FORWARD FFT BACKWARD FFT 2D Precision Precision N1 N2 Time Real Real Imag Imaq Time _____ 32 0.11995E-05 0.20572E-04 0.0000 0.17881E-06 0.10663E-06 0.0000 32 32 34 0.10952E-05 0.18179E-04 0.0001 0.11921E-06 0.63061E-07 0.0000 32 36 0.12516E-05 0.22501E-04 0.0000 0.11921E-06 0.11339E-06 0.0000 0.17881E-06 0.66826E-07 0.0001 0.88658E-06 0.82503E-05 0.0001 32 38 32 40 0.12516E-05 0.22430E-04 0.0000 0.17881E-06 0.95745E-07 0.0000 32 42 0.99089E-06 0.15911E-04 0.0000 0.11921E-06 0.12151E-06 0.0000 32 44 0.88658E-06 0.10286E-04 0.0001 0.29802E-06 0.17938E-06 0.0001 0.11473E-05 0.23840E-04 0.0001 0.35763E-06 0.63112E-07 0.0001 0.12516E-05 0.24430E-04 0.0000 0.27816E-06 0.12973E-06 0.0000 32 46 32 48 0.10430E-05 0.16983E-04 0.0000 0.17881E-06 0.11206E-06 0.0000 32 50 34 32 0.11473E-05 0.18179E-04 0.0001 0.11921E-06 0.78046E-07 0.0001 48 50 0.10952E-05 0.20840E-04 0.0001 0.30120E-06 0.12803E-06 0.0001 50 32 0.99089E-06 0.16983E-04 0.0000 0.17881E-06 0.11192E-06 0.0000 50 34 0.83443E-06 0.14590E-04 0.0001 0.17881E-06 0.10692E-06 0.0001 0.10430E-05 0.18912E-04 0.0001 0.23842E-06 0.11300E-06 0.0001 50 36 0.46937E-06 0.47101E-05 0.0001 0.17881E-06 0.10619E-06 0.0001 50 38 50 40 0.93873E-06 0.18840E-04 0.0001 0.35763E-06 0.11030E-06 0.0001 50 0.62582E-06 0.12322E-04 0.0001 0.29802E-06 0.11184E-06 0.0001 42 50 44 0.46937E-06 0.66967E-05 0.0001 0.29802E-06 0.14250E-06 0.0001 50 46 0.99089E-06 0.20251E-04 0.0001 0.23842E-06 0.10202E-06 0.0001 50 48 0.10430E-05 0.20840E-04 0.0001 0.29802E-06 0.15117E-06 0.0001 50 0.57367E-06 0.13393E-04 0.0001 0.35763E-06 0.11255E-06 0.0001 50 _____ Program TestSingleton: Resume Worst case accuracies BACKWARD FORWARD Real Imaq Real Imaq _____ 0.94782E-06 0.14143E-04 0.35763E-06 0.14948E-06 1D 0.13559E-05 0.28287E-04 0.77486E-06 0.28650E-06 2DProgram TestSingleton: Normal termination. _____

 Table 2.15
 Output of program TestSingleton

2.12 Module SortMod

Module *SortMod* in directory genscat/support/sort contains two routines for sorting the wind vector solutions found in the inversion step to their probability. The associated test program is *SortModTest*. Its output is shown in table 2.16.

Test	progr	am fo	r the	Sort	Mod m	odule		
Unsor	ted a	rray						
10.0	9.0	8.0	7.0	6.0	5.0	4.0	3.0	2.0 1.0
After	GetS	ortIn	dex					
1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0 10.0
Sorte	d arr	ay, a	fter	SortW	ithIn	dex		
1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0 10.0

 Table 2.16
 Output of program SortModTest

3 PenWP integration test

Directory penwp/tests contains one HDF5 file for testing the PenWP executable. File S1L2A2012006_12113_12114_2.h5.gz contains (gzipped) OSCAT level 2a data from 6 January 2012, 13:51 to 14:03 UTC with 50 km cell spacing, as obtained from ISRO. The files ECMWF*.grib contain the necessary NWP data (SST, land-sea mask and wind forecasts) to perform the NWP collocation step.

The user can test the proper functioning of PenWP using the files in the penwp/tests directory. To do this, first create a small file containing a list of NWP files:

ls -1 ECMWF_* > nwpflist

Note that the '-1' contains the number '1' and not the character '1'. Then, gunzip the HDF5 file:

gunzip -c S1L2A2012006_12113_12114_2.h5.gz >
S1L2A2012006_12113_12114_2.h5

Set the \$BUFR_TABLES environment variable:

export BUFR_TABLES=../../genscat/support/bufr/bufr_tables/

for Korn shell or Bourne shell or

setenv BUFR_TABLES ../../genscat/support/bufr/bufr_tables/

for C shell. Convert the level 2a input file to BUFR:

```
../execs/oscat_hdf2bufr -allswath -f S1L2A2012006_12113_12114_2.h5
-o oscat.bufr
```

Then run PenWP:

```
../execs/penwp_run -f oscat.bufr -nwpfl nwpflist -mss -mon -noc
-genericws 4
```

The result should be two OSCAT level 2 files in BUFR format, called oscat_20120106_135109_ocsat2_12113_o_500_ovw_l2.bufr and oscat_20120106_135109_ocsat2_12113_o_500_ovw_l2.bufr.genws.

The first file is in NOAA BUFR format and the second file is in KNMI format with generic wind section.

3.1 OSCAT test data

Figure 3.1 shows the global coverage of the OSCAT test run on 50 km. The colours show the magnitude of the wind speed as indicated by the legend. Figure 3.2 shows detailed wind vector plots over the Atlantic west of Africa, with 50 km cell spacing. In the detail plot, a magenta marker on top of the wind arrow denotes land presence. Orange wind arrows indicate that the Variational

NWP	SAF
	DAL

Quality Control flag is set, i.e. the Wind Vector Cell is spatially inconsistent. An orange dot means that the KNMI Quality Control Flag is set.

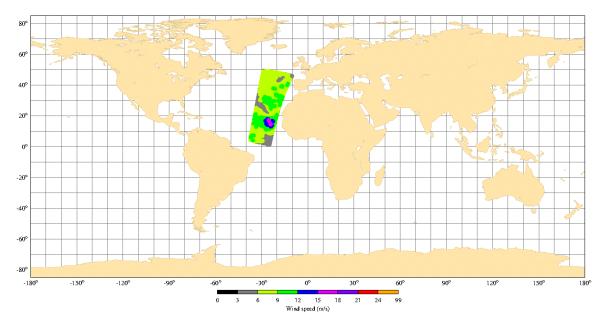


Figure 3.1 Global coverage of the OSCAT test run. Wind speed results for the 50 km product are shown.

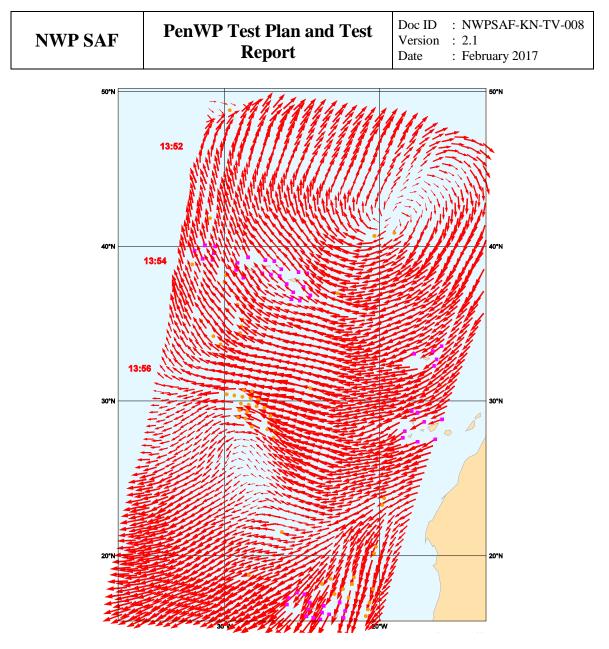


Figure 3.2 Detail plot of the OSCAT test run. Wind vectors for the 50 km product are shown.

Table 3.1 shows one decoded Wind Vector Cell of the resulting output file in NOAA BUFR format and table 3.2 the same WVC in KNMI BUFR format with generic wind section.

1	SATELLITE IDENTIFIER	421.0000	CODE TABLE 1007
2	DIRECTION OF MOTION OF MO	195.0000	DEGREE TRUE
3	SATELLITE SENSOR INDICATO	MISSING	CODE TABLE 2048
4	WIND SCATTEROMETER GEOPHY	9.0000	CODE TABLE 21119
5	SOFTWARE IDENTIFICATION (1903.0000	NUMERIC
6	CROSS TRACK RESOLUTION	50000.0000	М
7	ALONG TRACK RESOLUTION	50000.0000	M
8	ORBIT NUMBER	12113.0000	NUMERIC
9	YEAR	2012.0000	YEAR
10	MONTH	1.0000	MONTH
11	DAY	6.0000	DAY
12	HOUR	13.0000	HOUR
13	MINUTE	51.0000	MINUTE
14	SECOND	9.0000	SECOND
15	LATITUDE (COARSE ACCURACY	46.1700	DEGREE
16	LONGITUDE (COARSE ACCURAC	-11.4400	DEGREE
17	TIME DIFFERENCE QUALIFIER	5.0000	CODE TABLE 8025
18	SECOND	0.0000	SECOND

 Provide
 Page of the second secon 19 ALONG TRACK ROW NUMBER

MISSING NUMERIC

93	RADAR LOOK ANGLE	76.6300	DEGREE	
94	RADAR INCIDENCE ANGLE	48.9600	DEGREE	
95	ANTENNA POLARISATION	0.0000	CODE TABLE	2104
96	SEAWINDS NORMALIZED RADAR	-33.8500	dB	
97	KP VARIANCE COEFFICIENT (1.0040	NUMERIC	
98	KP VARIANCE COEFFICIENT (0.0000	NUMERIC	
99	KP VARIANCE COEFFICENT (G	-86.2560	dB	
100	SEAWINDS SIGMA-0 QUALITY	0.0000	FLAG TABLE	21115
101	SEAWINDS SIGMA-0 MODE	4096.0000	FLAG TABLE	21116
102	SEAWINDS LAND/ICE SURFACE	0.0000	FLAG TABLE	8018
103	SIGMA-0 VARIANCE QUALITY	MISSING	NUMERIC	
104	NUMBER OF OUTER-BEAM SIGM	1.0000	NUMERIC	
105	LATITUDE (COARSE ACCURACY	46.1700	DEGREE	
106	LONGITUDE (COARSE ACCURAC	-11.4500	DEGREE	
107	ATTENUATION CORRECTION ON	0.1700	dB	
108	RADAR LOOK ANGLE	55.5400	DEGREE	
109	RADAR INCIDENCE ANGLE	57.9000	DEGREE	
110	ANTENNA POLARISATION	1.0000	CODE TABLE	2104
111	SEAWINDS NORMALIZED RADAR	-32.0100	dB	
112	KP VARIANCE COEFFICIENT (1.0040	NUMERIC	
113	KP VARIANCE COEFFICIENT (0.0000	NUMERIC	
114	KP VARIANCE COEFFICENT (G	-78.2850	dB	
115	SEAWINDS SIGMA-0 QUALITY	0.0000	FLAG TABLE	21115
116	SEAWINDS SIGMA-0 MODE	12288.0000	FLAG TABLE	21116
117	SEAWINDS LAND/ICE SURFACE	0.0000	FLAG TABLE	8018
118	SIGMA-0 VARIANCE QUALITY	MISSING	NUMERIC	

1 SATELLITE IDENTIFIER 421.0000 CODE TABLE 1007 2 DIRECTION OF MOTION OF MO 195.0000 DEGREE TRUE 3 SATELLITE SENSOR INDICATO MISSING CODE TABLE 2048 4 WIND SCATTEROMETER GEOPHY 9.0000 CODE TABLE 21119 5 SOFTWARE IDENTIFICATION (13.0000 NUMERIC 6 CROSS TRACK RESOLUTION 50000.0000 M 8 ORBIT NUMBER 12113.0000 NUMERIC 9 YEAR 2012.0000 YEAR 10 MONTH 1.0000 MONTH 11 DAY 6.0000 DAY 12 HOUR 13.0000 HOUR 13 MINUTE 50.0000 COE TABLE 8025 14 SECOND NUMERIC 15 LATITUDE (COARSE ACCURAC -11.4400 DEGREE 16 LONGITUDE (COARSE ACCURAC -11.4400 DEGREE 17 THE DIFFERENCE QUALIFIER 5.0000 CODE TABLE 8025 18 SECOND 0.0000 SECOND 19 ALONG TRACK ROW NUMBER MISSING NUMERIC 20 CROSS-TRACK CELL NUMBER MISSING NUMERIC 21 TOTAL NUMBER OF SIGMA-0 M 4.0000 NUMERIC
9 YEAR2012.0000 YEAR10 MONTH1.0000 MONTH11 DAY6.0000 DAY13 MINUTE13.0000 HOUR13 MINUTE51.0000 MINUTE14 SECOND9.0000 SECOND15 LATITUDE (COARSE ACCURACY46.1700 DEGREE16 LONGITUDE (COARSE ACCURACY-11.4400 DEGREE17 TIME DIFFERENCE QUALIFIER5.0000 CODE TABLE 802518 SECOND0.0000 SECOND19 ALONG TRACK ROW NUMBERMISSING NUMERIC20 CROSS-TRACK CELL NUMBER6.0000 NUMERIC21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K29 STANDARD DEVIATION BRIGHT9.1000 K30 ANTEINNA POLARISATION1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K31 STANDARD DEVIATION BRIGHT1.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.2.8000 K34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR INCIDENCE ANGLE48.9600 DEGREE
9 YEAR2012.0000 YEAR10 MONTH1.0000 MONTH11 DAY6.0000 DAY13 MINUTE13.0000 HOUR13 MINUTE51.0000 MINUTE14 SECOND9.0000 SECOND15 LATITUDE (COARSE ACCURACY46.1700 DEGREE16 LONGITUDE (COARSE ACCURACY-11.4400 DEGREE17 TIME DIFFERENCE QUALIFIER5.0000 CODE TABLE 802518 SECOND0.0000 SECOND19 ALONG TRACK ROW NUMBERMISSING NUMERIC20 CROSS-TRACK CELL NUMBER6.0000 NUMERIC21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K29 STANDARD DEVIATION BRIGHT9.1000 K30 ANTEINNA POLARISATION1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K31 STANDARD DEVIATION BRIGHT1.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.2.8000 K34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR INCIDENCE ANGLE48.9600 DEGREE
9 YEAR2012.0000 YEAR10 MONTH1.0000 MONTH11 DAY6.0000 DAY13 MINUTE13.0000 HOUR13 MINUTE51.0000 MINUTE14 SECOND9.0000 SECOND15 LATITUDE (COARSE ACCURACY46.1700 DEGREE16 LONGITUDE (COARSE ACCURACY-11.4400 DEGREE17 TIME DIFFERENCE QUALIFIER5.0000 CODE TABLE 802518 SECOND0.0000 SECOND19 ALONG TRACK ROW NUMBERMISSING NUMERIC20 CROSS-TRACK CELL NUMBER6.0000 NUMERIC21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K29 STANDARD DEVIATION BRIGHT9.1000 K30 ANTEINNA POLARISATION1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K31 STANDARD DEVIATION BRIGHT1.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.2.8000 K34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR INCIDENCE ANGLE48.9600 DEGREE
9 YEAR2012.0000 YEAR10 MONTH1.0000 MONTH11 DAY6.0000 DAY13 MINUTE13.0000 HOUR13 MINUTE51.0000 MINUTE14 SECOND9.0000 SECOND15 LATITUDE (COARSE ACCURACY46.1700 DEGREE16 LONGITUDE (COARSE ACCURACY-11.4400 DEGREE17 TIME DIFFERENCE QUALIFIER5.0000 CODE TABLE 802518 SECOND0.0000 SECOND19 ALONG TRACK ROW NUMBERMISSING NUMERIC20 CROSS-TRACK CELL NUMBER6.0000 NUMERIC21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K29 STANDARD DEVIATION BRIGHT9.1000 K30 ANTEINNA POLARISATION1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K31 STANDARD DEVIATION BRIGHT1.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.2.8000 K34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR INCIDENCE ANGLE48.9600 DEGREE
9 YEAR2012.0000 YEAR10 MONTH1.0000 MONTH11 DAY6.0000 DAY13 MINUTE13.0000 HOUR13 MINUTE51.0000 MINUTE14 SECOND9.0000 SECOND15 LATITUDE (COARSE ACCURACY46.1700 DEGREE16 LONGITUDE (COARSE ACCURACY-11.4400 DEGREE17 TIME DIFFERENCE QUALIFIER5.0000 CODE TABLE 802518 SECOND0.0000 SECOND19 ALONG TRACK ROW NUMBERMISSING NUMERIC20 CROSS-TRACK CELL NUMBER6.0000 NUMERIC21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K29 STANDARD DEVIATION BRIGHT9.1000 K30 ANTEINNA POLARISATION1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K31 STANDARD DEVIATION BRIGHT1.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.2.8000 K34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR INCIDENCE ANGLE48.9600 DEGREE
9 YEAR2012.0000 YEAR10 MONTH1.0000 MONTH11 DAY6.0000 DAY13 MINUTE13.0000 HOUR13 MINUTE51.0000 MINUTE14 SECOND9.0000 SECOND15 LATITUDE (COARSE ACCURACY46.1700 DEGREE16 LONGITUDE (COARSE ACCURACY-11.4400 DEGREE17 TIME DIFFERENCE QUALIFIER5.0000 CODE TABLE 802518 SECOND0.0000 SECOND19 ALONG TRACK ROW NUMBERMISSING NUMERIC20 CROSS-TRACK CELL NUMBER6.0000 NUMERIC21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K29 STANDARD DEVIATION BRIGHT9.1000 K30 ANTEINNA POLARISATION1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K31 STANDARD DEVIATION BRIGHT1.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.2.8000 K34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR INCIDENCE ANGLE48.9600 DEGREE
9 YEAR2012.0000 YEAR10 MONTH1.0000 MONTH11 DAY6.0000 DAY13 MINUTE13.0000 HOUR13 MINUTE51.0000 MINUTE14 SECOND9.0000 SECOND15 LATITUDE (COARSE ACCURACY46.1700 DEGREE16 LONGITUDE (COARSE ACCURACY-11.4400 DEGREE17 TIME DIFFERENCE QUALIFIER5.0000 CODE TABLE 802518 SECOND0.0000 SECOND19 ALONG TRACK ROW NUMBERMISSING NUMERIC20 CROSS-TRACK CELL NUMBER6.0000 NUMERIC21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K29 STANDARD DEVIATION BRIGHT9.1000 K30 ANTEINNA POLARISATION1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K31 STANDARD DEVIATION BRIGHT1.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.2.8000 K34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR INCIDENCE ANGLE48.9600 DEGREE
10MONTH1.0000MONTH11DAY6.0000DAY12HOUR13.0000HOUR13MINUTE51.0000MINUTE14SECOND9.0000SECOND15LATITUDE (COARSE ACCURACY46.1700DEGREE16LONGITUDE (COARSE ACCURACY-11.4400DEGREE17TIME DIFFERENCE QUALIFIER5.0000CODE TABLE 802518SECOND0.0000SECOND19ALONG TRACK ROW NUMBERMISSING NUMERIC20CROSS-TRACK CELL NUMBER6.0000NUMERIC21TOTAL NUMBER OF SIGMA-0MISSING NUMERIC22PROBABILITY OF RAINMISSING NUMERIC23SEAWINDS NOF* RAIN INDEX13.0000NUMERIC24INTENSITY OF PRECIPITATIOMISSING dB26ANTENNA POLARISATION0.0000CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.100031TOTAL NUMBER (WITH RESPEC42.000032BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.000035LATITUDE (COARSE ACCURACY46.170034NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.170036LONGITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACC
11 DAY6.0000 DAY12 HOUR13.0000 HOUR13 MINUTE51.0000 MINUTE14 SECOND9.0000 SECOND15 LATITUDE (COARSE ACCURACY46.1700 DEGREE16 LONGITUDE (COARSE ACCURACY46.1700 DEGREE17 TIME DIFFERENCE QUALIFIER5.0000 CODE TABLE 802518 SECOND0.0000 SECOND19 ALONG TRACK ROW NUMBERMISSING NUMERIC20 CROSS-TRACK CELL NUMBER6.0000 NUMERIC21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25 ATTENUATION CORRECTION OFMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K29 STANDARD DEVIATION BRIGHT9.1000 K31 TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.0000 NUMERIC34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOCK ANGLE133.0400 DEGREE39 RADAR LOCK ANGLE48.9600 DEGREE
12 HOUR13.0000 HOUR13 MINUTE51.0000 MINUTE14 SECOND9.0000 SECOND15 LATITUDE (COARSE ACCURACY46.1700 DEGREE16 LONGITUDE (COARSE ACCURAC-11.4400 DEGREE17 TIME DIFFERENCE QUALIFIER5.0000 CODE TABLE 802518 SECOND0.0000 SECOND19 ALONG TRACK ROW NUMBERMISSING NUMERIC20 CROSS-TRACK CELL NUMBER6.0000 NUMERIC21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25 ATTENUATION CORRECTION OFMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K29 STANDARD DEVIATION BRIGHT9.1000 K31 TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.0000 NUMERIC34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOCK ANGLE133.0400 DEGREE39 RADAR LOCK ANGLE48.9600 DEGREE
13 MINUTE51.0000 MINUTE14 SECOND9.0000 SECOND15 LATITUDE (COARSE ACCURACY46.1700 DEGREE16 LONGITUDE (COARSE ACCURAC-11.4400 DEGREE17 TIME DIFFERENCE QUALIFIER5.0000 CODE TABLE 802518 SECOND0.0000 SECOND19 ALONG TRACK ROW NUMBERMISSING NUMERIC20 CROSS-TRACK CELL NUMBERMISSING NUMERIC21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25 ATTENUATION CORRECTION OFMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K39 STANDARD DEVIATION BRIGHT1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.0000 NUMERIC34 NUMBER (WITH RESPEC42.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR LOCK ANGLE48.9600 DEGREE
14SECOND9.0000SECOND15LATITUDE (COARSE ACCURACY46.1700DEGREE16LONGITUDE (COARSE ACCURACY-11.4400DEGREE17TIME DIFFERENCE QUALIFIER5.0000CODE TABLE 802518SECOND0.0000SECOND19ALONG TRACK ROW NUMBERMISSING NUMERIC20CROSS-TRACK CELL NUMBER6.0000NUMERIC21TOTAL NUMBER OF SIGMA-0 M4.0000NUMERIC22PROBABILITY OF RAINMISSING NUMERIC23SEAWINDS NOF* RAIN INDEX13.0000NUMERIC24INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25ATTENUATION CORRECTION OFMISSING GB26ANTENNA POLARISATION0.0000CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT1.0000CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT1.28000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURACY46.1700 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE133.0400 DEGREE39RADAR LOOK ANGLE48.9600 DEGREE
15LATITUDE (COARSE ACCURACY46.1700 DEGREE16LONGITUDE (COARSE ACCURAC-11.4400 DEGREE17TIME DIFFERENCE QUALIFIER5.0000 CODE TABLE 802518SECOND0.0000 SECOND19ALONG TRACK ROW NUMBERMISSING NUMERIC20CROSS-TRACK CELL NUMBER6.0000 NUMERIC21TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22PROBABILITY OF RAINMISSING NUMERIC23SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24INTENSITY OF PRECIPITATIOMISSING dB25ATTENUATION CORRECTION OFMISSING dB26ANTENNA POLARISATION0.0000 CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC49.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT1.0000 NUMERIC34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURACY46.1700 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE133.0400 DEGREE39RADAR LONCANGLE48.9600 DEGREE
18SECOND0.0000SECOND19ALONG TRACK ROW NUMBERMISSING NUMERIC20CROSS-TRACK CELL NUMBER6.0000NUMERIC21TOTAL NUMBER OF SIGMA-0 M4.0000NUMERIC22PROBABILITY OF RAINMISSING NUMERIC23SEAWINDS NOF* RAIN INDEX13.0000NUMERIC24INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25ATTENUATION CORRECTION OFMISSING dB26ANTENNA POLARISATION0.0000CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURACY46.1700 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE133.0400 DEGREE39RADAR LOOK ANGLE48.9600 DEGREE
18SECOND0.0000SECOND19ALONG TRACK ROW NUMBERMISSING NUMERIC20CROSS-TRACK CELL NUMBER6.0000NUMERIC21TOTAL NUMBER OF SIGMA-0 M4.0000NUMERIC22PROBABILITY OF RAINMISSING NUMERIC23SEAWINDS NOF* RAIN INDEX13.0000NUMERIC24INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25ATTENUATION CORRECTION OFMISSING dB26ANTENNA POLARISATION0.0000CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURACY46.1700 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE133.0400 DEGREE39RADAR LOOK ANGLE48.9600 DEGREE
18SECOND0.0000SECOND19ALONG TRACK ROW NUMBERMISSING NUMERIC20CROSS-TRACK CELL NUMBER6.0000NUMERIC21TOTAL NUMBER OF SIGMA-0 M4.0000NUMERIC22PROBABILITY OF RAINMISSING NUMERIC23SEAWINDS NOF* RAIN INDEX13.0000NUMERIC24INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25ATTENUATION CORRECTION OFMISSING dB26ANTENNA POLARISATION0.0000CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURACY46.1700 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE133.0400 DEGREE39RADAR LOOK ANGLE48.9600 DEGREE
18SECOND0.0000SECOND19ALONG TRACK ROW NUMBERMISSING NUMERIC20CROSS-TRACK CELL NUMBER6.0000NUMERIC21TOTAL NUMBER OF SIGMA-0 M4.0000NUMERIC22PROBABILITY OF RAINMISSING NUMERIC23SEAWINDS NOF* RAIN INDEX13.0000NUMERIC24INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25ATTENUATION CORRECTION OFMISSING dB26ANTENNA POLARISATION0.0000CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURACY46.1700 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE133.0400 DEGREE39RADAR LOOK ANGLE48.9600 DEGREE
20CROSS-TRACK CELL NUMBER6.0000 NUMERIC21TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22PROBABILITY OF RAINMISSING NUMERIC23SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25ATTENUATION CORRECTION OFMISSING dB26ANTENNA POLARISATION0.0000 CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURACY46.1700 DEGREE38RADAR LOOK ANGLE133.0400 DEGREE39RADAR LOOK ANGLE48.9600 DEGREE
21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25 ATTENUATION CORRECTION OFMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K29 STANDARD DEVIATION BRIGHT1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT1.2.8000 K34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR LOOK ANGLE48.9600 DEGREE
21 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC22 PROBABILITY OF RAINMISSING NUMERIC23 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24 INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25 ATTENUATION CORRECTION OFMISSING dB26 ANTENNA POLARISATION0.0000 CODE TABLE 210427 TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28 BRIGHTNESS TEMPERATURE124.9000 K29 STANDARD DEVIATION BRIGHT9.1000 K30 ANTENNA POLARISATION1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT12.8000 K34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY46.1700 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR LOOK ANGLE48.9600 DEGREE
22PROBABILITY OF RAINMISSING NUMERIC23SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC24INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25ATTENUATION CORRECTION OFMISSING dB26ANTENNA POLARISATION0.0000 CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURACY46.1700 DEGREE38RADAR LOOK ANGLE133.0400 DEGREE39RADAR LOOK ANGLE48.9600 DEGREE
24INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25ATTENUATION CORRECTION OFMISSING dB26ANTENNA POLARISATION0.0000 CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURAC-11.4200 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE48.9600 DEGREE39RADAR LOCK ANGLE48.9600 DEGREE
24INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S25ATTENUATION CORRECTION OFMISSING dB26ANTENNA POLARISATION0.0000 CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURAC-11.4200 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE48.9600 DEGREE39RADAR LOCK ANGLE48.9600 DEGREE
26ANTENNA POLARISATION0.0000 CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURAC-11.4200 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE48.9600 DEGREE
26ANTENNA POLARISATION0.0000 CODE TABLE 210427TOTAL NUMBER (WITH RESPEC58.0000 NUMERIC28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURAC-11.4200 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE48.9600 DEGREE
28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURACY-11.4200 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE133.0400 DEGREE39RADAR LOCK ANGLE48.9600 DEGREE
28BRIGHTNESS TEMPERATURE124.9000 K29STANDARD DEVIATION BRIGHT9.1000 K30ANTENNA POLARISATION1.0000 CODE TABLE 210431TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32BRIGHTNESS TEMPERATURE198.0000 K33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURACY-11.4200 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE133.0400 DEGREE39RADAR LOCK ANGLE48.9600 DEGREE
29 STANDARD DEVIATION BRIGHT9.1000 K30 ANTENNA POLARISATION1.0000 CODE TABLE 210431 TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT12.8000 K34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACY-11.4200 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR INCIDENCE ANGLE48.9600 DEGREE
31 TOTAL NUMBER (WITH RESPEC42.0000 NUMERIC32 BRIGHTNESS TEMPERATURE198.0000 K33 STANDARD DEVIATION BRIGHT12.8000 K34 NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35 LATITUDE (COARSE ACCURACY46.1700 DEGREE36 LONGITUDE (COARSE ACCURACC-11.4200 DEGREE37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR INCIDENCE ANGLE48.9600 DEGREE
32 BRIGHINESS TEMPERATURE 198.0000 K 33 STANDARD DEVIATION BRIGHT 12.8000 K 34 NUMBER OF INNER-BEAM SIGM 1.0000 NUMERIC 35 LATITUDE (COARSE ACCURACY 46.1700 DEGREE 36 LONGITUDE (COARSE ACCURAC -11.4200 DEGREE 37 ATTENUATION CORRECTION ON 0.1700 dB 38 RADAR LOOK ANGLE 133.0400 DEGREE 39 RADAR INCIDENCE ANGLE 48.9600 DEGREE
32 BRIGHINESS TEMPERATURE 198.0000 K 33 STANDARD DEVIATION BRIGHT 12.8000 K 34 NUMBER OF INNER-BEAM SIGM 1.0000 NUMERIC 35 LATITUDE (COARSE ACCURACY 46.1700 DEGREE 36 LONGITUDE (COARSE ACCURAC -11.4200 DEGREE 37 ATTENUATION CORRECTION ON 0.1700 dB 38 RADAR LOOK ANGLE 133.0400 DEGREE 39 RADAR INCIDENCE ANGLE 48.9600 DEGREE
33STANDARD DEVIATION BRIGHT12.8000 K34NUMBER OF INNER-BEAM SIGM1.0000 NUMERIC35LATITUDE (COARSE ACCURACY46.1700 DEGREE36LONGITUDE (COARSE ACCURAC-11.4200 DEGREE37ATTENUATION CORRECTION ON0.1700 dB38RADAR LOOK ANGLE133.0400 DEGREE39RADAR INCIDENCE ANGLE48.9600 DEGREE
35 LATITUDE (COARSE ACCURACY 46.1700 DEGREE 36 LONGITUDE (COARSE ACCURACY -11.4200 DEGREE 37 ATTENUATION CORRECTION ON 0.1700 dB 38 RADAR LOOK ANGLE 133.0400 DEGREE 39 RADAR INCIDENCE ANGLE 48.9600 DEGREE
35 LATITUDE (COARSE ACCURACY 46.1700 DEGREE 36 LONGITUDE (COARSE ACCURACY -11.4200 DEGREE 37 ATTENUATION CORRECTION ON 0.1700 dB 38 RADAR LOOK ANGLE 133.0400 DEGREE 39 RADAR INCIDENCE ANGLE 48.9600 DEGREE
37 ATTENUATION CORRECTION ON0.1700 dB38 RADAR LOOK ANGLE133.0400 DEGREE39 RADAR INCIDENCE ANGLE48.9600 DEGREE
38 RADAR LOOK ANGLE 133.0400 DEGREE 39 RADAR INCIDENCE ANGLE 48.9600 DEGREE
39 RADAR INCIDENCE ANGLE 48.9600 DEGREE
39 RADAR INCIDENCE ANGLE 48.9600 DEGREE
40 ANTENNA POLARISATION 0.0000 CODE TABLE 2104
41 SEAWINDS NORMALIZED RADAR -31.7800 dB
41SEAWINDS NORMALIZED RADAR-31.7800 dB42KP VARIANCE COEFFICIENT (1.0040 NUMERIC43KP VARIANCE COEFFICIENT (0.0000 NUMERIC
43 KP VARIANCE COEFFICIENT (0.0000 NUMERIC

YesAFPerformance of the second o

118 BACKSCATTER DISTANCE	MISSING NUMERIC
119 LIKELIHOOD COMPUTED FOR	S MISSING NUMERIC

 Table 3.2
 Wind Vector Cell in KNMI BUFR format with generic wind section

From the plots and tables in this section it is clear that:

- Output can be provided in two BUFR formats.
- The Wind Vector Cell spacing is 50 km, see fields 6 and 7 in the BUFR outputs and figure 3.2.
- The output contains latitude, longitude, time, orbit and node numbers, NWP background wind vector, WVC quality flag, and information on the radar backscatter including σ^0 and K_p data.
- A consistent wind field is obtained which proves that both HDF5 and GRIB data are read successfully.
- The atmospheric attenuations are present in the BUFR output (fields 62, 77, 92 and 107 in the NOAA BUFR format).

The test was re-run with the BUFR output file as input and this results in a new output file with the same wind information. Hence, it is clear that PenWP accepts BUFR data as input as well as HDF5.

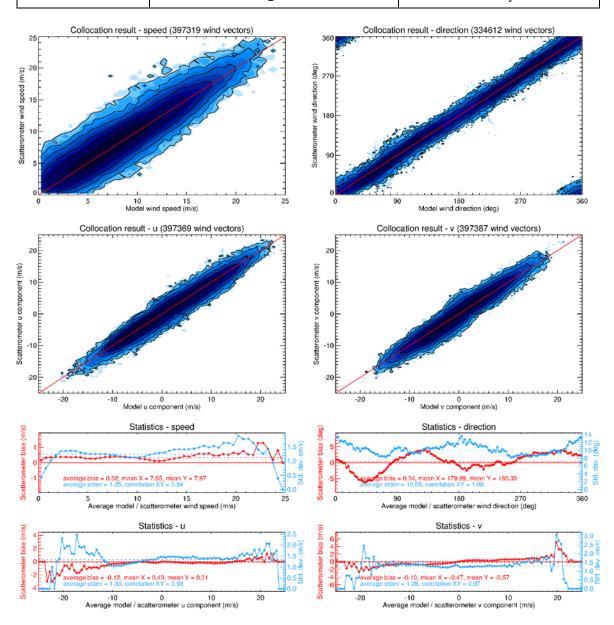
Table 3.3 shows what happens when the MLE value exceeds the threshold for Quality Control. The MLE of the fourth wind solution (the selected one by ambiguity removal) is contained in field 49 and has a value of 94.38. This is above the threshold value of 14.4 corresponding to wind speeds close to 9 m/s. The Wind Vector Cell Quality (field 21) has an integer value of 1028, i.e., Fortran bits 10 and 2 are set, corresponding to the flags for KNMI Quality Control and Rain.

21SEAWINDS WIND VECTOR CELL1028.0000FLAG TABLE 2110922MODEL WIND DIRECTION AT 1148.4800DEGREE TRUE23MODEL WIND SPEED AT 10M6.2700 M/S24NUMBER OF VECTOR AMBIGUIT4.0000 NUMERIC25INDEX OF SELECTED WIND VE4.0000 NUMERIC26TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC27PROBABILITY OF RAINMISSING NUMERIC28SEAMINDS NOF* RAIN INDEX13.0000 NUMERIC29INTENSITY OF PRECIPITATIOMISSING MG30ATTENUATION CORRECTION OFMISSING M/S31WIND SPEED AT 10 M7.7900 M/S32FORMAL UNCERTAINTY IN WINMISSING M/S33WIND DIRECTION AT 10 M290.0000 DEGREE TRUE34FORMAL UNCERTAINTY IN WIN14.9900 DEGREE TRUE35LIKELHOOD COMPUTED FOR S1.0000 NUMERIC36WIND SPEED AT 10 M112.5000 DEGREE TRUE37FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39FORMAL UNCERTAINTY IN WINMISSING M/S41WIND SPEED AT 10 M2.5000 DEGREE TRUE42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46WIND DIRECTION AT 10 M2.5000 DEGREE TRUE47FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE46WIND D				
23 MODEL WIND SPEED AT 10M6.2700 M/S24 NUMBER OF VECTOR AMBIGUIT4.0000 NUMERIC25 INDEX OF SELECTED WIND VE4.0000 NUMERIC26 TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC27 PROBABILITY OF RAINMISSING NUMERIC28 SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC29 INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S30 ATTENUATION CORRECTION OFMISSING M/S31 WIND SPEED AT 10 M7.7900 M/S32 FORMAL UNCERTAINTY IN WINMISSING M/S33 WIND DIRECTION AT 10 M290.0000 DEGREE TRUE34 FORMAL UNCERTAINTY IN WIN14.9900 DEGREE TRUE35 LIKELHOOD COMPUTED FOR S1.0000 NUMERIC36 WIND SPEED AT 10 M8.9600 M/S37 FORMAL UNCERTAINTY IN WINMISSING M/S38 WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39 FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40 LIKELHOOD COMPUTED FOR S0.0000 NUMERIC41 WIND SPEED AT 10 M7.9600 M/S42 FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE44 FORMAL UNCERTAINTY IN WINMISSING M/S43 WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44 FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE44 FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45 LIKELHOOD COMPUTED FOR S0.0000 MUMERIC46 WIND SPEED AT 10 M8.5300 M/S47 FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE46 WIND SPEED AT 10 M8.5300 M/S47 FORMAL UNCERTAINTY IN WINMISSING M/S48 WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	21	SEAWINDS WIND VECTOR CELL	<mark>1028.0000</mark>	FLAG TABLE 21109
24NUMBER OF VECTOR AMBIGUIT4.0000 NUMERIC25INDEX OF SELECTED WIND VE4.0000 NUMERIC26TOTAL NUMBER OF SIGMA-0 M4.0000 NUMERIC27PROBABILITY OF RAINMISSING NUMERIC28SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC29INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S30ATTENUATION CORRECTION OFMISSING dB31WIND SPEED AT 10 M7.7900 M/S32FORMAL UNCERTAINTY IN WINMISSING M/S33WIND DIRECTION AT 10 M290.0000 DEGREE TRUE34FORMAL UNCERTAINTY IN WIN14.9900 DEGREE TRUE35LIKELHHOD COMPUTED FOR S1.0000 NUMERIC36WIND SPEED AT 10 M8.9600 M/S37FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN85.300 M/S45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S<	22	MODEL WIND DIRECTION AT 1	148.4800	DEGREE TRUE
25INDEX OF SELECTED WIND VE4.0000NUMERIC26TOTAL NUMBER OF SIGMA-0 M4.0000NUMERIC27PROBABILITY OF RAINMISSING NUMERIC28SEAWINDS NOF* RAIN INDEX13.0000NUMERIC29INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S30ATTENUATION CORRECTION OFMISSING dB31WIND SPEED AT 10 M7.790032FORMAL UNCERTAINTY IN WINMISSING M/S33WIND DIRECTION AT 10 M290.000034FORMAL UNCERTAINTY IN WIN14.990035LIKELIHOOD COMPUTED FOR S1.000036WIND SPEED AT 10 M8.960037FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.500039FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M0.000040LIKELIHOOD COMPUTED FOR S0.000041WIND SPEED AT 10 M7.960042FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.500044FORMAL UNCERTAINTY IN WIN89.180045LIKELHOOD COMPUTED FOR S0.000044FORMAL UNCERTAINTY IN WIN89.180045LIKELHOOD COMPUTED FOR S0.000046WIND SPEED AT 10 M8.530047FORMAL UNCERTAINTY IN WIN89.180048WIND DIRECTION AT 10 M47.500046WIND SPEED AT 10 M8.530047FORMAL UNCERTAINTY IN WINMISSING M	23	MODEL WIND SPEED AT 10M	6.2700	M/S
26TOTAL NUMBER OF SIGMA-0 M4.0000NUMERIC27PROBABILITY OF RAINMISSING NUMERIC28SEAWINDS NOF* RAIN INDEX13.0000NUMERIC29INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S30ATTENUATION CORRECTION OFMISSING dB31WIND SPEED AT 10 M7.7900 M/S32FORMAL UNCERTAINTY IN WINMISSING M/S33WIND DIRECTION AT 10 M290.000034FORMAL UNCERTAINTY IN WIN14.990035LIKELIHOOD COMPUTED FOR S1.000036WIND SPEED AT 10 M8.960037FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.500039FORMAL UNCERTAINTY IN WINMISSING M/S39FORMAL UNCERTAINTY IN WIN48.460040LIKELIHOOD COMPUTED FOR S0.000041WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.500044FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M0.000044FORMAL UNCERTAINTY IN WIN89.180045LIKELIHOOD COMPUTED FOR S0.000046WIND SPEED AT 10 M8.530047FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.500048WIND DIRECTION AT 10 M147.5000	24	NUMBER OF VECTOR AMBIGUIT	4.0000	NUMERIC
27PROBABILITY OF RAINMISSING NUMERIC28SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC29INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S30ATTENUATION CORRECTION OFMISSING dB31WIND SPEED AT 10 M7.7900 M/S32FORMAL UNCERTAINTY IN WINMISSING M/S33WIND DIRECTION AT 10 M290.0000 DEGREE TRUE34FORMAL UNCERTAINTY IN WIN14.9900 DEGREE TRUE35LIKELIHOOD COMPUTED FOR S1.0000 NUMERIC36WIND SPEED AT 10 M8.9600 M/S37FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	25	INDEX OF SELECTED WIND VE	<mark>4.0000</mark>	NUMERIC
28SEAWINDS NOF* RAIN INDEX13.0000 NUMERIC29INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S30ATTENUATION CORRECTION OFMISSING dB31WIND SPEED AT 10 M7.7900 M/S32FORMAL UNCERTAINTY IN WINMISSING M/S33WIND DIRECTION AT 10 M290.0000 DEGREE TRUE34FORMAL UNCERTAINTY IN WIN14.9900 DEGREE TRUE35LIKELIHOOD COMPUTED FOR S1.0000 NUMERIC36WIND SPEED AT 10 M8.9600 M/S37FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M89.1800 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	26	TOTAL NUMBER OF SIGMA-0 M	4.0000	NUMERIC
29INTENSITY OF PRECIPITATIOMISSING KG/(M**2)S30ATTENUATION CORRECTION OFMISSING dB31WIND SPEED AT 10 M7.7900 M/S32FORMAL UNCERTAINTY IN WINMISSING M/S33WIND DIRECTION AT 10 M290.0000 DEGREE TRUE34FORMAL UNCERTAINTY IN WIN14.9900 DEGREE TRUE35LIKELIHOOD COMPUTED FOR S1.0000 NUMERIC36WIND SPEED AT 10 M8.9600 M/S37FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	27	PROBABILITY OF RAIN	MISSING	NUMERIC
30ATTENUATION CORRECTION OFMISSING dB31WIND SPEED AT 10 M7.7900 M/S32FORMAL UNCERTAINTY IN WINMISSING M/S33WIND DIRECTION AT 10 M290.0000 DEGREE TRUE34FORMAL UNCERTAINTY IN WIN14.9900 DEGREE TRUE35LIKELIHOOD COMPUTED FOR S1.0000 NUMERIC36WIND SPEED AT 10 M8.9600 M/S37FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M0.0000 NUMERIC44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	28	SEAWINDS NOF* RAIN INDEX	13.0000	NUMERIC
31 WIND SPEED AT 10 M7.7900 M/S32 FORMAL UNCERTAINTY IN WINMISSING M/S33 WIND DIRECTION AT 10 M290.0000 DEGREE TRUE34 FORMAL UNCERTAINTY IN WIN14.9900 DEGREE TRUE35 LIKELIHOOD COMPUTED FOR S1.0000 NUMERIC36 WIND SPEED AT 10 M8.9600 M/S37 FORMAL UNCERTAINTY IN WINMISSING M/S38 WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39 FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40 LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41 WIND SPEED AT 10 M7.9600 M/S42 FORMAL UNCERTAINTY IN WINMISSING M/S43 WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44 FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45 LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC44 FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45 LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46 WIND SPEED AT 10 M8.5300 M/S47 FORMAL UNCERTAINTY IN WINMISSING M/S48 WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	29	INTENSITY OF PRECIPITATIO	MISSING	KG/(M**2)S
32FORMAL UNCERTAINTY IN WINMISSING M/S33WIND DIRECTION AT 10 M290.0000 DEGREE TRUE34FORMAL UNCERTAINTY IN WIN14.9900 DEGREE TRUE35LIKELIHOOD COMPUTED FOR S1.0000 NUMERIC36WIND SPEED AT 10 M8.9600 M/S37FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45MIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	30	ATTENUATION CORRECTION OF	MISSING	dB
33 WIND DIRECTION AT 10 M290.0000 DEGREE TRUE34 FORMAL UNCERTAINTY IN WIN14.9900 DEGREE TRUE35 LIKELIHOOD COMPUTED FOR S1.0000 NUMERIC36 WIND SPEED AT 10 M8.9600 M/S37 FORMAL UNCERTAINTY IN WINMISSING M/S38 WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39 FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40 LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41 WIND SPEED AT 10 M7.9600 M/S42 FORMAL UNCERTAINTY IN WINMISSING M/S43 WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44 FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45 LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46 WIND SPEED AT 10 M89.1800 DEGREE TRUE47 FORMAL UNCERTAINTY IN WINMISSING M/S48 WIND DIRECTION AT 10 M147.5000 DEGREE TRUE			7.7900	M/S
34FORMAL UNCERTAINTY IN WIN14.9900 DEGREE TRUE35LIKELIHOOD COMPUTED FOR S1.0000 NUMERIC36WIND SPEED AT 10 M8.9600 M/S37FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	32	FORMAL UNCERTAINTY IN WIN	MISSING	M/S
35LIKELHOOD COMPUTED FOR S1.0000 NUMERIC36WIND SPEED AT 10 M8.9600 M/S37FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	33	WIND DIRECTION AT 10 M	290.0000	DEGREE TRUE
36 WIND SPEED AT 10 M8.9600 M/S37 FORMAL UNCERTAINTY IN WINMISSING M/S38 WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39 FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40 LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41 WIND SPEED AT 10 M7.9600 M/S42 FORMAL UNCERTAINTY IN WINMISSING M/S43 WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44 FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45 LIKELHOOD COMPUTED FOR S0.0000 NUMERIC46 WIND SPEED AT 10 M8.5300 M/S47 FORMAL UNCERTAINTY IN WINMISSING M/S48 WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	34	FORMAL UNCERTAINTY IN WIN	14.9900	DEGREE TRUE
37FORMAL UNCERTAINTY IN WINMISSING M/S38WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	35	LIKELIHOOD COMPUTED FOR S	1.0000	NUMERIC
38 WIND DIRECTION AT 10 M112.5000 DEGREE TRUE39 FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40 LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41 WIND SPEED AT 10 M7.9600 M/S42 FORMAL UNCERTAINTY IN WINMISSING M/S43 WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44 FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45 LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46 WIND SPEED AT 10 M8.5300 M/S47 FORMAL UNCERTAINTY IN WINMISSING M/S48 WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	36	WIND SPEED AT 10 M	8.9600	M/S
39FORMAL UNCERTAINTY IN WIN48.4600 DEGREE TRUE40LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	37	FORMAL UNCERTAINTY IN WIN	MISSING	M/S
40LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC41WIND SPEED AT 10 M7.9600 M/S42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	38	WIND DIRECTION AT 10 M	112.5000	DEGREE TRUE
41 WIND SPEED AT 10 M7.9600 M/S42 FORMAL UNCERTAINTY IN WINMISSING M/S43 WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44 FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45 LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46 WIND SPEED AT 10 M8.5300 M/S47 FORMAL UNCERTAINTY IN WINMISSING M/S48 WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	39	FORMAL UNCERTAINTY IN WIN	48.4600	DEGREE TRUE
42FORMAL UNCERTAINTY IN WINMISSING M/S43WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	40	LIKELIHOOD COMPUTED FOR S	0.0000	NUMERIC
43 WIND DIRECTION AT 10 M2.5000 DEGREE TRUE44 FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45 LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46 WIND SPEED AT 10 M8.5300 M/S47 FORMAL UNCERTAINTY IN WINMISSING M/S48 WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	41	WIND SPEED AT 10 M	7.9600	M/S
44 FORMAL UNCERTAINTY IN WIN89.1800 DEGREE TRUE45 LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46 WIND SPEED AT 10 M8.5300 M/S47 FORMAL UNCERTAINTY IN WINMISSING M/S48 WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	42			
45LIKELIHOOD COMPUTED FOR S0.0000 NUMERIC46WIND SPEED AT 10 M8.5300 M/S47FORMAL UNCERTAINTY IN WINMISSING M/S48WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	43	WIND DIRECTION AT 10 M	2.5000	DEGREE TRUE
46 WIND SPEED AT 10 M8.5300 M/S47 FORMAL UNCERTAINTY IN WINMISSING M/S48 WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	44	FORMAL UNCERTAINTY IN WIN	89.1800	DEGREE TRUE
47 FORMAL UNCERTAINTY IN WINMISSING M/S48 WIND DIRECTION AT 10 M147.5000 DEGREE TRUE	45	LIKELIHOOD COMPUTED FOR S		
48 WIND DIRECTION AT 10 M 147.5000 DEGREE TRUE	46	WIND SPEED AT 10 M	<mark>8.5300</mark>	M/S
	47	FORMAL UNCERTAINTY IN WIN	MISSING	M/S
	48	WIND DIRECTION AT 10 M	147.5000	DEGREE TRUE
49 FORMAL UNCERTAINTY IN WIN 94.3800 DEGREE IRUE	49	FORMAL UNCERTAINTY IN WIN	<mark>94.3800</mark>	DEGREE TRUE
50 LIKELIHOOD COMPUTED FOR S 0.0000 NUMERIC	50	LIKELIHOOD COMPUTED FOR S	0.0000	NUMERIC

 Table 3.3
 Part of Wind Vector Cell in NOAA BUFR format, rejected by Quality Control

The processing of the test file $(1/8^{th} \text{ of a full orbit})$ takes ~3 seconds on a Linux workstation with an Intel Xeon quad core CPU at 3.20GHz and 8 GB of memory. Hence the OSCAT wind processing can be done easily in near-real time on an affordable computer system.

4 Validation tests


There are several methods to validate scatterometer winds. Scatterometer winds are routinely compared with NWP data and in situ buoy winds in the OSI SAF project. See http://www.knmi.nl/scatterometer/osisaf/ for more information. In the scope of this Test Report, we show the results of a validation study of PenWP winds versus model wind forecasts from the ECMWF model. The correct implementation of the ice screening algorithm is demonstrated in section 4.2.

4.1 **PenWP winds versus ECMWF winds**

We compared the OSCAT winds from PenWP with ECMWF forecast winds from the operational model (+3 to +21 hours forecasts from the 00 UTC and 12 UTC runs). The OSCAT data are level 2a data version 1.3 from ISRO from 9 and 10 February 2012 (28 orbits), reprocessed with PenWP.

Figure 4.1 shows the collocations of the OSCAT and ECMWF winds. Contoured histograms are shown for wind speed, wind direction and u and v wind components and after rejection of Quality Controlled (KNMI QC flagged) wind vectors. Note that the ECMWF winds are real 10m winds, whereas the scatterometer winds are equivalent neutral 10m winds, which are on average 0.2 m/s higher. In the wind direction plots, only those wind vectors where the model wind speed is at least 4 m/s are taken into account. The bin sizes for the histograms are 0.5 m/s for wind speed, u and v, and 2.5° for wind direction.

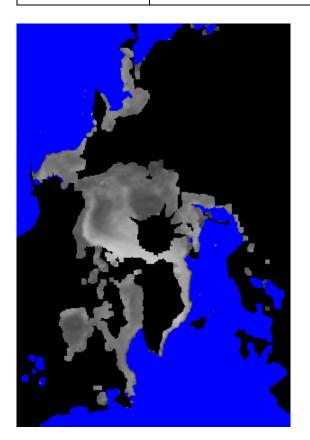

From the contour plots it is clear that biases are generally low. We obtain wind component standard deviations of 1.33 in u and 1.28 in v directions. This is comparable to the values we found for SeaWinds in the past: approximately 1.33 for u and v for the 25-km product and approximately 1.5 for both components for the 100-km product in the same period of the year. We expect that the OSCAT results can be improved by applying better calibration on the backscatter data. This is subject to further study in the NWP SAF and OSI SAF projects.

Figure 4.1 Collocation results of Oceansat-2 winds from PenWP and ECMWF forecast winds. Biases and standard deviations in bottom plots are in m/s for wind speed and components, in degrees for wind direction.

4.2 Ice screening test

Figure 4.2 shows the ice maps for North and South poles after processing two days of data. The test data are the same as in the previous section, i.e., 9 and 10 February 2012. Ice maps of the North Pole and South Pole are provided. The blue parts in the maps indicate open water; the black parts correspond to land areas or areas not visited within these two days. The gray scale is a measure of the ice *A*-parameter (albedo). Multi year ice has in general a higher albedo than first year ice, so lighter areas correspond to older ice. In the scope of this report we did not verify the ice extent in detail with other measurements. More information about the ice screening algorithm can be found in [8].

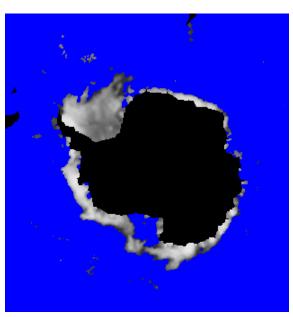


Figure 4.3 PenWP ice maps for North Pole (left) and South Pole (right).

4.3 NBEC test

From version 2.1 onwards PenWP offers the possibility to use Numerical Background Error Correlations (NBECs) in 2DVAR. These lead to a better analysis and hence better agreement with buoy winds and lower setting frequencies of the KNMI QC and VarQC flags, but at the cost of increased processing time. A detailed account is given in [9].

5 Portability tests

The PenWP software package inherits its portability by using strict Fortran 90 code (with a few low level routines for reading and writing binary in C). PenWP is delivered with a complete make system. The Makeoptions include file of genscat takes care of the different settings needed under various platforms. This Makeoptions file is also used for the SeaWinds scatterometer wind processor SDP, The ASCAT wind processor AWDP and the OSCAT scatterometer wind processor OWDP.

The default platform for development is a Linux work station. Different Fortran 90 compilers were used to compile both genscat and PenWP. Table 5.1 provides an overview of the platforms and compilers on which PenWP was tested successfully.

Platform	Operating system	Fortran compiler
Intel-based workstation	Fedora Linux v.19	GNU g95 v0.94
	3.14.27-100.fc19.x86_64	Portland f90 v11.10-0
		gfortran v4.8.3-7
		Intel Fortran v12.1.4
Linux cluster	Redhat Linux v5.11	Portland f90 v11.8-0
	2.6.18-404.el5	
Apple MacBook	MacOS X Darwin	GNU gfortran

Table 5.1 Supported platforms and compilers for PenWP.

6 User documentation tests

The user documentation (readme files within the software package and the PenWP user documents, [1], [2], [3]) have been provided to beta testers for review. The beta tester's comments have been implemented in the user documentation. User feedback on the documentation will also be implemented in future versions of the documentation.

References

- [1] Verhoef, A., Vogelzang, J., Verspeek, J. and Stoffelen, A., 2017, *PenWP User Manual and Reference Guide*, Report NWPSAF-KN-UD-009, EUMETSAT.
- [2] Verhoef, A., Vogelzang, J., Verspeek, J. and Stoffelen, A., 2017, *PenWP Product Specification*, Report NWPSAF-KN-DS-002, EUMETSAT.
- [3] Verhoef, A., Vogelzang, J., Verspeek, J. and Stoffelen, A., 2017, *PenWP Top Level Design*, Report NWPSAF-KN-DS-001, EUMETSAT.
- [4] Freilich, M.H., 1999,
 The SeaWinds Algorithm Theoretical Basis Document, NASA, (available on http://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-sws-01.pdf).
- [5] Padia, K, 2010,
 Oceansat-2 Scatterometer algorithms for sigma-0, processing and products format,
 Version 1.1, April 2010, ISRO.
- [6] Liu, D.C., and Nocedal, J., 1989
 On the limited memory BFGS method for large scale optimization methods, Mathematical Programming, 45, pp. 503-528.
- [7] Vogelzang, J., 2007,
 Two dimensional variational ambiguity removal (2DVAR). Report NWPSAF-KN-TR-004,
 EUMETSAT. (Available on <u>http://www.knmi.nl/scatterometer/publications/</u>).
- [8] Belmonte Rivas, M. and Stoffelen, A, 2011,
 New Bayesian algorithm for sea ice detection with QuikSCAT, IEEE Transactions on Geoscience and Remote Sensing, 49, 6, 1894-1901, doi:10.1109/TGRS.2010.2101608.
- [9] Vogelzang, J. and Stoffelen, A, 2016, ASCAT-derived empirical background error correlations in Ku-band scatterometer wind ambiguity removalQuikSCAT, Report NWPSAF-KN-TR-25, EUMETSAT. (Available on http://www.knmi.nl/scatterometer/publications/).

Appendix A: Acronyms

Name	Description
ASCAT	Advanced SCATterometer on Metop
AWDP	ASCAT Wind Data Processor
BUFR	Binary Universal Form for the Representation of data
C-band	Radar wavelength at about 5 cm
ECMWF	European Centre for Medium-range Weather Forecasts
EUMETSAT	European Organization for the Exploitation of Meteorological Satellites
genscat	generic scatterometer software routines
KNMI	Koninklijk Nederlands Meteorologisch Instituut (Royal Netherlands Meteorological
	Institute)
Ku-band	Radar wavelength at about 2 cm
L1b	Level 1b product
LSM	Land Sea Mask
Metop	Meteorological Operational Satellite
MLE	Maximum Likelihood Estimator
MSS	Multiple Solution Scheme
NRCS	Normalized Radar Cross-Section (σ^0)
NWP	Numerical Weather Prediction
OSI	Ocean and Sea Ice
OSCAT	Scatterometer onboard of the Indian Oceansat-2 and ScatSat-1 satellites
OWDP	OSCAT Wind Data Processor
PenWP	Pencil beam Wind Processor
QC	Quality Control
SAF	Satellite Application Facility
SDP	SeaWinds Data Processor
SST	Sea Surface Temperature
WVC	Wind Vector Cell, also called node or cell

Table A.1List of acronyms.