
Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Python/C/C++ wrapper

for RTTOV v12

 James Hocking, Pascale Roquet, Pascal Brunel

This documentation was developed within the context of the EUMETSAT Satellite
Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation
Agreement dated 7 December 2016, between EUMETSAT and the Met Office, UK, by one
or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office,
ECMWF, DWD and Météo France.

Copyright 2019, EUMETSAT, All Rights Reserved.

Change record
Version Date Author / changed by Remarks

0.1 2016-08-12 J Hocking First draft for v12 beta.
1.0 2016-11-11 J Hocking Post-beta updates.
1.1 2017-01-30 J Hocking/P Roquet Post-DRI updates.
1.2 2018-03-01 J Hocking Updates for v12.2
1.3 2019-02-05 J Hocking Updates for v12.3

1

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Table of contents
1. Introduction..3
2. Compilation and example code..4
3. General description of interface...7

3.1. Loading an instrument..7
3.2. Changing RTTOV options..10
3.3. Using the emissivity and/or BRDF atlases...12
3.4. Calling the RTTOV direct model..15
3.5. Calling the RTTOV K model..18
3.6. Calling the RTTOV direct model with explicit optical properties..19
3.7. Calling the RTTOV K model with explicit optical properties..23
3.8. Calling the RTTOV-SCATT direct model...24
3.9. Calling the RTTOV-SCATT K model...25
3.10. Deallocating memory..27

4. Specific information for Python...28
5. Specific information for C/C++..28
6. RTTOV classes...29

6.1. General method for calling RTTOV...31
6.2. Setting RTTOV options..32
6.3. Loading an instrument..32
6.4. Specifying surface emissivities and reflectances..33
6.5. Using the emissivity and BRDF atlases..34
6.6. Profile data for an RttovSafe object (C++ only)...35
6.7. Profile data for an RttovScattSafe object (C++ only)...36
6.8. Profile data for an Rttov object (C++ and Python)...37
6.9. Profile data for an RttovScatt object (C++ and Python)...39
6.10. Specifying explicit cloud/aerosol optical properties for visible/IR scattering simulations. .40
6.11. Calling RTTOV...42
6.12. Accessing RTTOV outputs...42
6.13. Deallocating memory..44

7. Limitations of the wrapper...44
Appendix A: Gas IDs..45
Appendix B: RTTOV wrapper subroutines..46
Appendix C: RttovSafe and Rttov classes (C++ and Python)...49
Appendix D: RttovScattSafe and RttovScatt classes (C++ and Python)...61
Appendix E: Profile class (used with RttovSafe objects; C++ only)..67
Appendix F: Profiles class (used with Rttov objects; C++ and Python)..70
Appendix G: ProfileScatt class (used with RttovScattSafe objects; C++ only).................................75
Appendix H: ProfilesScatt class (used with RttovScatt objects; C++ and Python)............................77
Appendix I: Options class (C++ and Python)...80
Appendix J: Atlas class (C++ and Python)...90
Appendix K: Enumeration types (C++)...93

2

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

1. Introduction
An interface has been created for RTTOV which allows RTTOV simulations using the direct and K
models to be run from Python (2 or 3), C or C++ . It is possible to use this interface to run RTTOV
without writing any Fortran code. C++ classes and a Python package have been created which allow
you to interact with RTTOV in an object-oriented style rather than calling the wrapper interface
subroutines directly.

The intention behind the design of the interface is to provide access to as much RTTOV
functionality as possible while keeping the interface simple.

This document explains how to call RTTOV from Python, C and C++. You should read the RTTOV
user guide (at least the sections which pertain to the kinds of simulations you wish to carry out) in
order to understand how RTTOV works before reading this document: this document cannot be
understood without reference to the RTTOV user guide.

Section 2 of this document describes compilation of RTTOV with the wrapper. There are two ways
to use the RTTOV wrapper:

1. You can call the interface subroutines directly as described in section 3. Sections 4 and 5
provide additional information specific to Python and C/C++ respectively.

2. Recommended method: Alternatively a collection of C++ classes have been created which
enable RTTOV to be called using object-oriented-style programming. A similar Python
interface is available via the pyrttov package. These classes are described in section 6.

You do not need to read sections 3-5 to understand section 6, but the earlier sections contain
information which may be useful.

Section 7 outlines the current limitations of the wrapper. Finally, the appendices provide some
additional information about the Fortran-Python/C/C++ interface and the object-oriented classes.

Currently the wrapper supports calls to rttov_direct and rttov_k for clear-sky and visible, IR and
MW scattering calculations optionally including use of the surface emissivity and BRDF atlases.

The main changes in the wrapper between RTTOV v11 and v12 relate to the way the emissivity and
BRDF atlases are managed: this has changed in a similar way to the Fortran interface to the atlases,
allowing you to initialise data for different atlases, months, and instruments simultaneously. In
addition the wrapper capabilities have been extended in RTTOV v12 to allow calls to RTTOV-
SCATT for MW scattering simulations and to allow visible/IR scattering simulations with explicit
optical properties.

In order to support new RTTOV features in v12.3 the Fortran interface described in sections 4 and 5
has changed since RTTOV v12.2. In addition, to support the new profile “specularity” variable (see
the user guide), the array containing profile skin parameters has an additional element. This means
that minor modifications are required to user code based on the v12.1/v12.2 object-oriented
interface described in section 6 (the Rttov and other C++ classes, and the pyrttov Python package).

3

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

2. Compilation and example code
The wrapper Fortran source code is contained in the src/wrapper/ directory. You can use the
wrapper with no external library dependencies (the Python wrapper requires f2py), but to use the
emissivity and/or BRDF atlases you must compile RTTOV against the HDF5 library (see the user
guide).

The easiest way to compile RTTOV is to edit the file build/Makefile.local to point to your HDF5
installation (if the atlases are required) and then do:

$ cd src/
$../build/rttov_compile.sh

This runs an interactive script for compiling RTTOV. If you want to compile RTTOV manually
refer to section 5.2 of the user guide for details.

Compiling C/C++ code which calls RTTOV

Example Python, C and C++ code is contained in the wrapper/ directory in the top-level of the
RTTOV installation.

In order to call RTTOV from C or C++ code you need to include the
src/wrapper/rttov_c_interface.h header file in your code and compile against the RTTOV libraries.
For the object-oriented interface you need to include the relevant class definitions. The example
code in the top-level wrapper/ directory demonstrates this.

Running Python code which calls RTTOV

Having compiled RTTOV as directed above the lib/ directory will contain the Fortran-Python
interface in the file rttov_wrapper_f2py.so. You should ensure this is in your current directory or
your $PYTHONPATH.

To call the interface subroutines directly you can import them from this file, for example in Python:

> from rttov_wrapper_f2py import rttov_load_inst, \
 rttov_call_direct, \
 rttov_drop_all

See the examples in the top-level wrapper/ directory which demonstrate calling RTTOV from
Python, e.g. example_python.py.

Alternatively you can use the pyrttov package which provides an object-oriented interface to
RTTOV.

4

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Example code and source files
The following files can be found in the wrapper/ directory:

interface_example_c.c Example of calling interface directly in C
interface_example_cpp.cpp Example of calling C++ interface directly
interface_example_rttovscatt_cpp.cpp Example of calling RTTOV-SCATT C++ interface
interface_example_python.py Example of calling Python interface directly
interface_example_rttovscatt_python.py Example of calling RTTOV-SCATT Python interface

pyrttov_example.py Example of using pyrttov Python package for multiple
instruments including use of the emissivity/BRDF atlases

pyrttov_visirscatt_example.py Example of using pyrttov for visible/IR scattering simulations
where optical properties are input

pyrttov_rttovscatt_example.py Example of using pyrttov for MW scattering simulations

Rttov_example.cpp Example of using C++ Rttov class for multiple instruments
including use of the emissivity/BRDF atlases

Rttov_visirscatt_example.cpp Example of using C++ Rttov class for visible/IR scattering
simulations where optical properties are input

RttovScatt_example.cpp Example of using C++ RttovScatt class for MW scattering
simulations

RttovSafe_example.cpp Example of using C++ RttovSafe class for multiple
instruments including use of the emissivity/BRDF atlases

RttovSafe_visirscatt_example.cpp Example of using C++ RttovSafe class for visible/IR scattering
simulations where optical properties are input

RttovScattSafe_example.cpp Example of using C++ RttovScattSafe class for MW scattering
simulations

Makefile Makefile to compile all C and C++ examples

These can be used as examples from which to develop your own code. The Makefile demonstrates
how to compile C and C++ code which calls RTTOV. In order to compile the examples you should
look at the top of the Makefile to see if you need to modify the compilers, compiler flags, or the
location of your RTTOV libraries. After editing the Makefile as necessary you can compile the
example code in the wrapper/ directory:

$ make

5

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

The following files define the classes used by the C++ object oriented interface to RTTOV (see
section 6); again the Makefile demonstrates how to compile code which uses the object oriented
interface:

RttovSafe.h/.cpp Class allowing you to call RTTOV for an instrument – carries out
some checks on the profiles to help prevent errors.

Profile.h/.cpp Class representing a single profile for use with RttovSafe.
Rttov.h/.cpp Class allowing you to call RTTOV – limited error checking.
Profiles.h/.cpp Class representing one or more profiles for use with Rttov.
RttovScattSafe.h/.cpp Class allowing you to call RTTOV-SCATT for an instrument – carries

out some checks on the profiles to help prevent errors.
ProfileScatt.h/.cpp Class representing a single profile for use with RttovScattSafe.
RttovScatt.h/.cpp Class allowing you to call RTTOV-SCATT – limited error checking.
ProfilesScatt.h/.cpp Class representing one or more profiles for use with RttovScatt.
Options.h/.cpp Class representing RTTOV and wrapper options.
Atlas.h/.cpp Class representing emissivity or BRDF data for a single atlas,

month, and (where relevant) instrument.

The Makefile compiles these classes into a library (librttovcppwrapper) which you can link your
own code against: the example code is compiled like this.

The C++ source includes Doxygen markup. To generate HTML and RTF documentation you can
run the following from within the wrapper/ directory:

$ doxygen doxygen_config_wrapper

The output can be found in wrapper/doxygen_doc_wrapper/.

The pyrttov Python package provides an object-oriented interface to RTTOV in Python. The
package source files are contained in the pyrttov/ directory. The pyrttov_doc/ directory can be used
to generate documentation for pyrttov using Sphinx: from within pyrttov_doc/ run

$ make html

This requires both the pyrttov package and the RTTOV rttov_wrapper_f2py.so library to be in your
$PYTHONPATH: the documentation can be found in _build/html/index.html. Section 6 provides
more details on the pyrttov package.

6

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

3. General description of interface
Note that the recommended way to call the interface is via the classes which are described in
section 6. The details of the underlying interface (described in this section) are hidden from the user
so the classes are a more user-friendly way of calling RTTOV. Nevertheless this section may be
useful to understand more about how the wrapper works. If you wish to call RTTOV from C you
must use the interface described in this section.

This section describes the interface in general terms: the Python and C/C++ interfaces are very
similar. To understand the wrapper interface itself you should read this and then refer to the
following two sections below which contain information specific to Python and C/C++. Appendix
B lists all subroutines in the RTTOV wrapper.

The wrapper allows you to load coefficients for one or more instruments simultaneously, set the
options associated with each instrument, make calls to the RTTOV direct and K models, and access
the resulting data. There are also subroutine calls to load data from the IR and MW emissivity and
BRDF atlases, and to obtain emissivity or BRDF data from the loaded atlases.

Each initialised instrument is entirely independent. It is possible to load the same coefficients
multiple times, giving you multiple independent instances of one instrument. For example, you
could extract a different channel set for each instance if you wanted to simulate the instrument for
different purposes. Alternatively you can initialise a collection of different instruments. Each
initialised instrument has its own set of RTTOV options associated with it.

Similarly, each set of atlas data is independent and can be used to obtain emissivities or BRDFs for
any compatible loaded instrument.

3.1. Loading an instrument

The rttov_load_inst subroutine is used to load an instrument. In this call you provide a string
containing the coefficient filename(s) to load (the “rtcoef” file and optionally aerosol or cloud IR
scattering files or a MW Mietable file), any RTTOV options you wish to set and some wrapper-
specific options. The format of this string is described below along with the wrapper-specific
options.

This subroutine returns an ID which is used in subsequent subroutine calls to identify this
instrument. If the returned ID is less than or equal to 0 this indicates that an error occurred and the
instrument was not initialised. The interface is as follows:

rttov_load_inst(&
 inst_id, &
 opts_str, &
 nchannels, &
 channels)

7

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Argument Type Intent Description

inst_id Integer out Returned ID for instrument; if <=0 then error occurred (instrument was not
initialised)

opts_str Character string in String containing options and coef filenames (see below).

nchannels Integer in Size of channels array (not required in Python).

channels(:) Integer in Channels to read from coefficient files. If set to (0) (i.e. an array of length
one containing a zero) all channels will be read from the coefficient file.

Notes:

To initialise the wrapper for multiple instruments you should make one call to
rttov_load_inst per instrument.

If you specify a channel list in channels(:) then beware that this will impact the channel numbering
when you make calls to RTTOV later. See the user guide section 7.4 for more information. In short:
if you have extracted n channels when reading the coefficient file they will subsequently be referred
to as 1,2,...,n rather than by their original channel numbers. If all channels from the coefficient file
are read in you can specify a subset of channels to simulate when you call RTTOV. Alternatively
you can extract just the required channels into a new coefficient file using rttov_conv_coef.exe (see
user guide Annex A) and then read all channels from this new file when loading the coefficients.
Note that if running RTTOV-SCATT (i.e. if a Mietable filename has been specified) the wrapper
will ignore any channels(:) argument as all channels must be read in (a warning is printed if you
supply the channels argument).

Specifying the options string

The options string consists of multiple space-separated key-value pairs. Each key is a character
string related to an option and the value is an integer, real or character string depending on the
option being set. It is important that there are no spaces in the option names (keys).

Example options string in Python:

This string sets up directories as if being called from the top-level wrapper/ directory:

opts_str = 'file_coef ' \
 '../rtcoef_rttov12/rttov9pred54L/rtcoef_msg_3_seviri.dat ' \
 'opts%interpolation%addinterp 1 ' \
 'opts%rt_ir%o3_data 1 ' \
 'opts%rt_ir%addsolar 1 ' \
 'nthreads 4 '

NB The space separation between options is important and there must be no spaces in option
names or file/path names!

See the example code in the top-level wrapper/ directory for more examples.

8

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

RTTOV coefficient files – rtcoef file mandatory, others optional

Specify full paths to the RTTOV coefficient file(s):

Key Value Description

file_coef Full path to rtcoef file Mandatory, path to rtcoef file.

file_scaer Full path to visible/IR aerosol coef file For visible/IR aerosol simulations, path to scaer coef file.

file_sccld Full path to visible/IR cloud coef file For visible/IR cloudy simulations, path to sccld coef file.

file_mfasis_cld Full path to MFASIS LUT file For visible cloudy simulations using MFASIS.

file_mietable Full path to MW Mietable file For RTTOV-SCATT simulations, path to Mietable file.

RTTOV options - optional

Every option available in the RTTOV options structure (see user guide Annex O) can be set in the
options string. The key value is given as in the table in Annex O of the user guide. For logical
options the value should be 0 or 1 for false/true respectively. The usual RTTOV default values apply
(see user guide). Remember: there must be no spaces in the option names specified in the string.
Some examples are given below:

Key Value Description

opts%config%verbose 0 or 1 Set RTTOV verbosity flag.

opts%rt_ir%addsolar 0 or 1 Turn solar radiation off/on.

opts%interpolation%interp_mode Integer 1-5 Set interpolation mode.

RTTOV-SCATT exposes only a subset of RTTOV options: these are also listed in Annex O of the
user guide. The RTTOV-SCATT options can be set using keys prefixed with “opts_scatt”, for
example: “opts_scatt%config%verbose”, “opts_scatt%fastem_version” and “opts_scatt
%lusercfrac”.

Wrapper-specific options - optional

Set options that are related specifically to the wrapper:

Key Value Description

verbose_wrapper 0 or 1 Set to 1 for more verbose output from the wrapper (default 0, all output
suppressed except fatal error messages).

nthreads Integer If <=1 RTTOV is called via the standard interface (e.g. rttov_direct), if
>1 RTTOV is called via the parallel interface (e.g. rttov_parallel_direct)
using the specified number of threads (default 1).

nprofs_per_call Integer – greater than 0 Sets the number of profiles passed to each call to rttov_direct or rttov_k
within the wrapper (default 1).

check_opts 0 or 1 If set to 1 the Fortran rttov_user_options_checkinput
subroutine (see user guide Annex N) is called to help ensure consistency
between the selected options and the loaded coefficient file (default 1).

9

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

store_trans 0 or 1 Set to 1 to enable access to transmittance outputs from RTTOV calls
(default 0).

store_rad 0 or 1 Set to 1 to enable access to radiance outputs from RTTOV direct model
calls (default 0).

store_rad2 0 or 1 Set to 1 to enable access to secondary radiance outputs from RTTOV
direct model calls (default 0). If this is set to 1 then store_rad will
automatically be set to 1 as well.

store_emis_terms 0 or 1 Set to 1 to enable access to the emissivity retrieval outputs from RTTOV-
SCATT direct model calls (default 0). Note that this requires the
opts_scatt%lradiance option to be set to 1 (true) as well.

Notes:

To take advantage of multi-threaded execution (by setting nthreads > 1) you must compile RTTOV
with OpenMP compiler flags (see user guide).

When calling RTTOV through the wrapper (see below) you can pass any number of profiles. The
wrapper will then break these down into chunks and the underlying rttov_direct/etc
subroutines are called for nprofs_per_call at a time until all profiles have been simulated. You may
obtain improved performance (especially with multi-threaded execution) by increasing
nprofs_per_call above the default of 1, but if you are simulating a very large number of channels
you may run out of memory if this is set too high.

The calls to RTTOV include arguments which return the total TOA radiances and the equivalent
brightness temperatures or reflectances (depending on channel wavelength). If you require access to
additional RTTOV radiance or transmittance outputs you should set the store_trans, store_rad,
store_rad2 and/or store_emis_terms options. You can then use the subroutines listed in Annex B to
access this information after calling RTTOV. Note that if store_rad2 is set then store_rad will also
be set automatically. See the user guide for more information on RTTOV outputs.

If you are performing visible/IR cloud or aerosol scattering simulations with optical properties from
coefficient files (“scaer*”, “sccld*”files) you must ensure the addclouds and/or addaerosl RTTOV
options and the paths to the required coefficient file(s) are set in the options string when loading the
instrument. If you wish to carry out MFASIS simulations you must set the path to the MFASIS LUT
file in the options string in addition to the “sccld” cloud property file. For RTTOV-SCATT calls the
path to the Mietable file must be set in the options string.

3.2. Changing RTTOV options

It is possible to modify the options at any time for an instrument which has been initialised by a call
to rttov_load_inst.

rttov_set_options(&
 err, &
 inst_id, &
 opts_str)

10

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Argument Type Intent Description

err Integer out Return code: non-zero implies error condition.

inst_id Integer in ID of instrument (as returned by rttov_load_inst) whose options should be
updated.

opts_str Character string in String containing options to change.

You can change any options in the options structure and any of the wrapper-specific options in this
call. Setting the coefficient file names has no effect in a call to rttov_set_options and you
should not turn on scattering options which require optical properties from coefficient files if the
coefficient files were not read in when rttov_load_inst was called. Options that were
previously set are retained so you only need to specify options you wish to change.

You can also print the RTTOV and wrapper options by calling rttov_print_options (this
calls the RTTOV rttov_print_opts Fortran subroutine, see user guide Annex N):

rttov_print_options(err, inst_id)

where err is the output return code and inst_id is the input ID for the instrument whose options you
wish to print.

11

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

3.3. Using the emissivity and/or BRDF atlases

The emissivity and BRDF atlases can be used to obtain land surface and, in some cases, sea-ice and
water emissivity and BRDF values that can be passed into the call to RTTOV. More details about
the atlases are given in the user guide.

In order to use the emissivity or BRDF atlases they must first be loaded. There are separate
subroutine to set up the BRDF, IR emissivity and MW emissivity atlases. Each subroutine returns a
wrapper atlas ID which is used in subsequent subroutine calls to identify this atlas data. If the
returned ID is less than or equal to 0 this indicates that an error occurred and the atlas was not
initialised. The interfaces are as follows:

rttov_load_ir_emis_atlas(atlas_wrap_id, path, month, atlas_id, inst_id,
ang_corr)
rttov_load_mw_emis_atlas(atlas_wrap_id, path, month, atlas_id, inst_id)
rttov_load_brdf_atlas(atlas_wrap_id, path, month, atlas_id, inst_id)

Argument Type Intent Description

atlas_wrap_id Integer out Returned wrapper ID for atlas data; if <=0 then error occurred
(atlas was not initialised)

path Character string in String containing path to atlas data files.

month Integer in Month (1-12) for which to initialise atlas.

atlas_id Integer in ID of atlas to load, set to -1 for default atlas (see the user guide for
the valid IR, MW and BRDF atlas IDs).

inst_id Integer in ID of instrument (as returned by rttov_load_inst) of instrument for
which to initialise atlas (may be 0: see below).

ang_corr Integer in IR atlas only: set non-zero to include the zenith angle emissivity
correction (see user guide for more information).

Notes:

You can call these subroutines as many times as required (subject to memory limitations) to
initialise atlas data from different atlases for multiple months and/or instruments.

For the BRDF atlas, only one atlas is available so you can set the atlas_id to -1.

There are two IR emissivity and two MW emissivity atlases available with IDs as follows:

• UW IR emissivity atlas: atlas_id = 1 (default)

• CAMEL IR emissivity atlas: atlas_id = 2

• TELSEM2 MW atlas: atlas_id = 1 (default)

• CNRM MW atlas: atlas_id = 2

12

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

The IR emissivity and BRDF atlases can be initialised with an inst_id for a loaded instrument: in
this case the atlas data will be specific to that instrument and calls to obtain emissivities/BRDFs will
be more rapid, but the loaded data must only be used with that instrument. If you supply a negative
inst_id the atlas data can be used with any visible/IR instrument.

The TELSEM2 MW atlas can always be used with any MW instrument so the inst_id argument is
ignored in this case.

The CNRM MW atlas is always initialised for a specific instrument and so the inst_id for a loaded
instrument must always be supplied in this case.

Obtaining emissivity/BRDF values

A single subroutine is provided to return emissivity/BRDF values from the atlas:

rttov_get_emisbrdf(&
 err, &
 atlas_wrap_id, &
 latitude, &
 longitude, &
 surftype, &
 watertype, &
 zenangle, &
 azangle, &
 sunzenangle, &
 sunazangle, &
 snow_fraction, &
 inst_id, &
 channel_list, &
 emisbrdf, &
 nchannels, &
 nprofiles)

Argument Type Intent Description

err Integer out Return code: non-zero implies error condition.

atlas_wrap_id Integer in ID of atlas data (as returned by one of the atlas loading
subroutines described above) to use.

latitude(nprofiles) Real in Latitude for each profile (used by: all atlases).

longitude(nprofiles) Real in Longitude for each profile (used by: all atlases).

surftype(nprofiles) Integer in skin%surftype for each profile (used by: all atlases).

watertype(nprofiles) Integer in skin%watertype for each profile (used by: BRDF atlas).

zenangle(nprofiles) Real in Satellite zenith angle for each profile (used by: BRDF atlas,
MW emissivity atlases, IR atlases only if angular correction is
applied).

azangle(nprofiles) Real in Satellite azimuth angle for each profile (used by: BRDF atlas).

sunzenangle(nprofiles) Real in Solar zenith angle for each profile (used by: BRDF atlas, IR
emissivity atlases if angular correction applied)

13

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

sunazangle(nprofiles) Real in Solar azimuth angle for each profile (used by: BRDF atlas).

snow_fraction(nprofiles) Real in skin%snow_fraction for each profile (used by: optionally by
IR emissivity atlas).

inst_id Real in ID of loaded instrument for which to obtain emissivities/
BRDFs. Must be compatible with the atlas data.

channel_list(nchannels) Integer in List of channel numbers for which to obtain emissivities/
BRDFs.

emisbrdf(nprofiles,nchannels) Real inout Output emissivities/BRDFs (depending on atlas type) for each
channel and for each profile.

nchannels Integer in Number of channels to simulate (not required in Python).

nprofiles Integer in Number of profiles being passed in (not required in Python).

Notes:

This subroutine can be called with suitable atlas data to obtain the emissivity and/or BRDF values
for input to calls to RTTOV (see below).

See Annex O and table 10 in the user guide for information about profile variables (the names in the
table above relate to the names in the Fortran profile structure). The RTTOV user guide provides
more information about the atlases in respect of, for example, how they each treat different surface
types and the input data required by each atlas. All arguments must be supplied to the interface, but
if particular variables are not used by the specified atlas the arrays can just be initialised with zeros.

The array index ordering shown above is that which should be used in C/C++: this is opposite to
Fortran array index ordering. For Python you should reverse the order of the indices for the 2-
dimensional array arguments. It may also be more efficient to ensure that Python stores the arrays in
Fortran-contiguous order. See the Python, C and C++ examples which illustrate how to declare the
array arguments.

If you extracted a subset of channels from the coefficient file in the rttov_load_inst call for the
supplied inst_id then the channel numbers in channel_list(:) are indexes into this list (see user guide
section 7.4).

If the specified atlas has no data for the given location it will return a negative value. You may wish
to check the output of this subroutine call for negative values and use a different source of
emissivity in those cases. However you can pass negative values into RTTOV (see below) and
RTTOV will provide surface emissivity/BRDF values for those channels in the simulations.

14

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

3.4. Calling the RTTOV direct model

Once a coefficient file has been loaded you can call RTTOV to simulate radiances for an arbitrary
number of profiles. Profile data is input via a series of integer and real (float) arrays. The top-of-
atmosphere radiances and brightness temperatures (or reflectances) are returned via array
arguments. The interface is as follows:

rttov_call_direct(&
 err, &
 inst_id, &
 channel_list, &
 datetimes, &
 angles, &
 surfgeom, &
 surftype, &
 skin, &
 s2m, &
 simplecloud, &
 clwscheme, &
 icecloud, &
 zeeman, &
 p, &
 t, &
 gas_id, &
 gases, &
 surfemisrefl, &
 btrefl, &
 rads, &
 nchannels, &
 ngases, &
 nlevels, &
 nprofiles)

Argument Type Intent Description

err Integer out Return code: non-zero implies error condition.

inst_id Integer in ID of instrument (as returned by rttov_load_inst) of instrument
to simulate.

channel_list(nchannels) Integer in Channel numbers to simulate.

datetimes(nprofiles,6) Integer in (year, month, day, hour, minute, second) for each profile.

angles(nprofiles,4) Real in (zenangle, azangle, sunzenangle, sunazangle) for each profile.

surfgeom(nprofiles,3) Real in (latitude, longitude, elevation) for each profile.

surftype(nprofiles,2) Integer in (skin%surftype, skin%watertype) for each profile.

skin(nprofiles,10) Real in (skin%t, skin%salinity, skin%snow_fraction, skin
%foam_fraction, skin%fastem(1:5), skin%specularity) for
each profile.

s2m(nprofiles,6) Real in (s2m%p, s2m%t, s2m%q, s2m%u, s2m%v, s2m%wfetc) for
each profile.

15

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

simplecloud(nprofiles,2) Integer in (ctp, cfraction) for each profile.

clwscheme(nprofiles) Integer in Visible/IR clw_scheme for each profile.

icecloud(nprofiles,2) Integer in (ice_scheme, idg) for each profile.

zeeman(nprofiles,2) Real in (Be, cosbk) for each profile.

p(nprofiles,nlevels) Real in Pressure levels for each profile.

t(nprofiles,nlevels) Real in Temperature on pressure levels for each profile.

gas_id(ngases) Integer in List of IDs for gases, aerosol and cloud profiles present in the
gases array, see below.

gases(ngases,nprofiles,nlevels) Real in Gas, aerosol and cloud concentrations on levels/layers for each
profile: must contain at least water vapour profiles, see below.

surfemisrefl(2,nprofiles,nchannels) Real inout Input surface emissivity and BRDF values for each channel;
on output contains the values used by RTTOV, see below.

btrefl(nprofiles,nchannels) Real inout Output total TOA brightness temperatures (for all channels at
wavelengths > 3µm) or reflectances (wavelengths < 3µm).

rads(nprofiles,nchannels) Real inout Output total TOA radiances.

nchannels Integer in Number of channels to simulate (not required in Python).

ngases Integer in Size of gas_id(:) array, see below (not required in Python).

nlevels Integer in Number of levels in input profiles (not required in Python).

nprofiles Integer in Number of profiles being passed in (not required in Python).

Notes:

If you extracted a subset of channels from the coefficient file in the rttov_load_inst call then the
channel numbers in channel_list(:) are indexes into this list (see user guide section 7.4).

The array index ordering shown above is that which should be used in C/C++: this is opposite to
Fortran array index ordering. For Python you should reverse the order of the indices for the 2- and
3-dimensional array arguments. It may also be more efficient to ensure that Python stores the arrays
in Fortran-contiguous order. See the Python, C and C++ examples which illustrate how to declare
the profile data arrays.

See Annex O and table 10 in the user guide for information about profile variables (the names in the
table above relate to the names in the Fortran profile structure) and which variables are used in
which circumstances. All arguments must be supplied to the interface, but if particular variables are
not used in the simulations you are performing the arrays can just be initialised with zeros.

Surface emissivity/BRDF

You should refer to the user guide sections 7.5 and 7.6 to understand how RTTOV treats surface
emissivity and BRDF.

The surfemisrefl(0,:,:) and surfemisrefl(1,:,:) arrays are used to control the input or calculation of
surface emissivities and BRDFs respectively for all channels for each profile. If you provide non-
negative (i.e. >=0) values for any channel then calcemis (or calcrefl) will be set to false for that
channel and the supplied value is used for the surface emissivity (or BRDF). If a value in

16

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

surfemisrefl(:,:,:) is negative then calcemis (or calcrefl) will be set to true.

If you wish to use the atlases you can call the rttov_get_emisbrdf subroutine to obtain the emissivity
or BRDF values which should be passed into RTTOV via the surfemisrefl argument.

On exit from the subroutine call the surfemisrefl array is overwritten with the emissivity and BRDF
values used by RTTOV: these will be identical to the input values where the input values were non-
negative, otherwise they will be the values calculated by RTTOV's internal surface models.

NB When making multiple calls to the wrapper interface be sure to re-initialise the surfemisrefl
array appropriately between calls to avoid inadvertently passing in emissivity and BRDF values
from the previous call.

Specifying gas, aerosol and cloud profiles

RTTOV coefficient files support varying numbers of trace gases (see table 4 in section 3 of the user
guide). In addition, IR cloud and aerosol simulations based on “method 1” (see user guide sections
8.5 and 8.6) require one or more profiles of cloud and aerosol concentrations and also a cloud
fraction array for cloudy simulations. Any or all of these are supplied to the interface using the
gases array.

The list of gas, aerosol and cloud inputs you wish to pass into RTTOV should be listed in the gas_id
array. There is one element per input variable which should contain the corresponding ID for that
variable (see appendix A of this document for the list of IDs). The gases array should then be
populated with the appropriate concentrations in the corresponding order.

The gas_id array must always contain at least the water vapour ID (1) because this is a mandatory
input for RTTOV. The order of the variables in gas_id and gases does not matter, but the two arrays
must be consistent with one another.

Also note that aerosol and cloud inputs are on layers rather than levels: profiles of these variables
should be written to the first nlayers values in the array, the final value (at nlevels) is ignored.

As an example, suppose we wish to run an IR cloudy simulation with the STCO and ice cloud
types. We must always include water vapour and the cloudy simulations also require cfrac (cloud
fraction). Then the gas_id and gases arrays should be specified as follows (pseudo-code):

ngases = 4, for gas IDs see appendix A:
1=>q, 20=>cfrac, 21=>STCO (cloud type 1), 30=>ice cloud (cloud type 6)
gas_id[:] = [1, 20, 21, 30]

water vapour – on levels
gases[0:nprofiles, 0:nlevels, 0] = q[0:nprofiles, 0:nlevels]

cfrac – on layers
gases[0:nprofiles, 0:nlevels-1, 1] = cfrac[0:nprofiles, 0:nlevels-1]

STCO – on layers
gases[0:nprofiles, 0:nlevels-1, 2] = strat_cont[0:nprofiles, 0:nlevels-1]

ice cloud – on layers
gases[0:nprofiles, 0:nlevels-1, 3] = ice_cloud[0:nprofiles, 0:nlevels-1]

17

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Outputs

The output radiances and brightness temperatures (or reflectances for VIS/NIR channels) are
written to the rads and btrefl arrays. These correspond to the radiance%total, radiance%bt and
radiance%refl output arrays: the latter two are “merged” into the btrefl array such that for channels
with wavelengths above 3µm BTs are stored while for other channels reflectances are stored.
Additional subroutine calls are available which give access to all of the RTTOV radiance and
transmittance outputs, assuming the relevant wrapper options were set (store_rad, store_rad2,
store_trans): see section 3.1 and appendix B.

3.5. Calling the RTTOV K model

The RTTOV K model interface is similar in many ways to the direct model interface: arguments
with the same name behave in exactly the same way as described in the previous section. The K call
has some additional arguments to hold the input BT and/or radiance perturbations and the output
profile variable Jacobians. The interface is described below with details given only for the K
arguments not present in the interface for rttov_call_direct:

rttov_call_k(&
 err, &
 inst_id, &
 channel_list, &
 datetimes, &
 angles, &
 surfgeom, &
 surftype, &
 skin, &
 skin_k, &
 s2m, &
 s2m_k, &
 simplecloud, &
 simplecloud_k, &
 clwscheme, &
 icecloud, &
 zeeman, &
 p, &
 p_k, &
 t, &
 t_k, &
 gas_id, &
 gases, &
 gases_k, &
 surfemisrefl, &
 surfemisrefl_k, &
 btrefl, &
 rads, &
 bt_k, &
 rads_k, &
 nchannels, &
 ngases, &
 nlevels, &

18

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

 nprofiles)

Argument Type Intent Description

skin_k(nprofiles,nchannels,10) Real inout Calculated Jacobians for (skin%t, skin%salinity, skin
%snow_fraction*, skin%foam_fraction, skin%fastem(1:5),
skin%specularity*).
* snow_fraction and specularity are not active in the RTTOV
K model so the corresponding Jacobians are always zero.

s2m_k(nprofiles,nchannels,6) Real inout Calculated Jacobians for (s2m%p, s2m%t, s2m%q, s2m%u,
s2m%v, s2m%wfetc).

simplecloud_k(nprofiles,nchannels,2) Integer inout Calculated Jacobians for (ctp, cfraction).

p_k(nprofiles,nchannels,nlevels) Real inout Calculated Jacobians for pressure.

t_k(nprofiles,nchannels,nlevels) Real inout Calculated Jacobians for temperature.

gases_k(ngases,nprofiles,nchannels,
nlevels)

Real inout Calculated Jacobians for gas, aerosol and cloud, variable
order matches the input gas_id and gases arrays, see above.

surfemisrefl_k(2,nprofiles,nchannels) Real inout Calculated Jacobians for surface emissivity and BRDF.

bt_k(nprofiles,nchannels) Real in Input BT perturbations (only for channels at wavelengths >
3µm).

rads_k(nprofiles,nchannels) Real in Input radiance perturbations.

Notes:

The user guide provides more detailed information on calling the RTTOV K model. The input
perturbations are supplied in brightness temperature (bt_k) for channels at wavelengths greater than
3µm if opts%rt_all%switchrad is set true in the options. Otherwise perturbations are supplied in
radiance (rads_k). It is safe to set input perturbations in both bt_k and rads_k for all channels:
RTTOV will use the appropriate perturbation for each channel based on the setting of the switchrad
option.

3.6. Calling the RTTOV direct model with explicit optical properties

This applies only to visible/IR sensors. You should read sections 8.5 and 8.6 of the user guide to
understand the scattering options and inputs: this corresponds to “method 2”. For “method 1” where
optical properties are taken from the cloud/aerosol coefficient files see section 3.4 above. When
calling this interface either opts%rt_ir%addclouds or opts%rt_ir%addaerosl (or both) must be true
and the corresponding opts%rt_ir%user_cld_opt_param or opts%rt_ir%user_aer_opt_param (or
both) must be true. You can use optical properties from the relevant coefficient file for clouds or
aerosols and supply explicit optical properties for the other via this interface: follow the procedure
described in section 3.4 above for the pre-defined cloud/aerosol optical properties. The interface is
as follows:

rttov_visir_scatt_call_direct(&
 err, &
 inst_id, &

19

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

 channel_list, &
 datetimes, &
 angles, &
 surfgeom, &
 surftype, &
 skin, &
 s2m, &
 clwscheme, &
 icecloud, &
 p, &
 t, &
 gas_units, &
 mmr_cldaer, &
 gas_id, &
 gases, &
 aer_phangle, &
 aer_asb, &
 aer_legcoef, &
 aer_pha, &
 cld_phangle, &
 cld_asb, &
 cld_legcoef, &
 cld_pha, &
 surfemisrefl, &
 btrefl, &
 rads, &
 nchannels, &
 ngases, &
 nlevels, &
 nprofiles, &
 aer_nphangle, &
 aer_nmom, &
 cld_nphangle, &
 cld_nmom)

This subroutine call is rather similar to rttov_call_direct except for the additional optical
property inputs. Note that the simple_cloud and zeeman inputs are not present because these do not
pertain to visible/IR scattering simulations. However the other inputs such as skin and s2m are
identical even though some of the variables contained therein only apply to MW simulations.

There are additional optical parameter inputs: these are provided separately for aerosols and clouds.
Optical property profiles are provided for each layer, for each channel being simulated, for each
profile. You can call this subroutine for any subset of channels read from the coefficient file, but
your optical property arrays must correspond to this channel_list argument. In contrast to the
contents of the gases input array, the optical property arrays are all sized by nlayers (i.e. nlevels
minus one). The inputs are described in the table below are for clouds: the aerosol ones are
identical.

20

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Argument Type Description

cld_asb(3,nprofiles,nchannels,nlayers) Real Absorption coefficients (cld_asb(1,:,:,:)), scattering
coefficients (cld_asb(2,:,:,:)) and bpr parameters
(cld_asb(3,:,:,:)). The absorption and scattering coefficients
are required in all cases, units km-1. The bpr values are only
required for IR channels when Chou-scaling is used: they can
be zero otherwise. See below for how to calculate bpr values.

cld_nphangle Integer Number of angles on which phase functions are defined. If
solar radiation is not active this can be 1. (not required in
Python).

cld_phangle(cld_nphangle) Real Angle grid on which phase functions are defined (degrees).
First value must be 0° and final value must be 180°.

cld_pha(nprofiles,nchannels,nlayers,
cld_nphangle)

Real Azimuthally-averaged phase functions normalised such that
the integral over all scattering angles is 4π. Phase functions
are only required for solar-affected channels when opts%rt_ir
%addsolar is true (i.e. when solar radiation is included).

cld_nmom Integer Number of Legendre coefficients provided for each phase
function. If the DOM solver is not being used this can be zero.
For DOM calculations this should be at least as large as the
number of DOM streams being used (not required in Python).

cld_legcoef(nprofiles,nchannels,nlayers,
cld_nmom+1)

Real Legendre coefficients corresponding to each phase function.
Note the final dimension is cld_nmom+1: this is consistent
with the RTTOV internal structures: the “zeroth” coefficient is
always 1. Legendre coefficients are only required for all
channels for which the DOM solver is being used. See below
for how to calculate Legendre coefficients.

Notes:

For cloud simulations you must always supply a cloud fraction profile: this is done via the “gases”
input array as described in section 3.4.

The “store_rad2” option has no effect in this case as the secondary radiance outputs are not
calculated for visible/IR scattering simulations.

For layers containing no cloud/aerosol the phase function values and Legendre coefficients can be
zero.

If clouds or aerosols are not active in the simulation (i.e. addclouds or addaerosl is false) you can
provide minimal arrays of zeros for the corresponding cloud/aerosol inputs. This can be achieved by
setting the nphangle dimension to 1 and the nmom dimension to zero (recalling that the legcoef
input has dimension nmom+1). Cloud and aerosol nphangle and nmom dimensions are independent.

Wrappers are provided for the RTTOV subroutines which calculate bpr values and Legendre
coefficients from phase functions. The bpr calculation in particular is relatively expensive and as
such is probably not suitable for calling within an operational system. In practice you may want to

21

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

calculate the required bpr values off-line and store them for use in simulations.

rttov_bpr(err, phangle, pha, bpr, nthreads, nphangle)

Argument Type Intent Description

err Integer out Return code, non-zero value implies error.

phangle(nphangle) Real in Angle grid on which phase functions are defined (degrees).
First value must be 0° and final value must be 180°.

pha(nphangle) Real in Azimuthally-averaged phase functions normalised such that
the integral over all scattering angles is 4π.

bpr Real out Calculated bpr value.

nthreads Integer in Number of OpenMP threads to use in the calculation (has no
effect unless RTTOV is compiled with OpenMP).

nphangle Integer in Number of angles on which phase functions are defined (not
required in Python).

rttov_legcoef(err, phangle, pha, legcoef, ngauss, nphangle, nmom)

Argument Type Intent Description

err Integer out Return code, non-zero value implies error.

phangle(nphangle) Real in Angle grid on which phase functions are defined (degrees).
First value must be 0° and final value must be 180°.

pha(nphangle) Real in Azimuthally-averaged phase functions normalised such that
the integral over all scattering angles is 4π.

legcoef(nmom+1) Real inout Calculated Legendre coefficients.

ngauss Integer in Legendre coefficients are calculated using Gaussian
quadrature. By default the quadrature size is 1000 points. You
can specify a different quadrature size using this parameter.
Note that the input value must be greater than or equal to
nmom otherwise it is ignored.

nphangle Integer in Number of angles on which phase functions are defined (not
required in Python).

nmom Integer in Number of Legendre coefficients to calculate. For DOM
calculations this should be at least as large as the number of
DOM streams being used (not required in Python).

22

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

3.7. Calling the RTTOV K model with explicit optical properties

This is very similar to the direct model interface described in the previous section and in terms of
the Jacobian calculations it is very similar to the K model interface described in section 3.5 above.

rttov_visir_scatt_call_k(&
 err, &
 inst_id, &
 channel_list, &
 datetimes, &
 angles, &
 surfgeom, &
 surftype, &
 skin, &
 skin_k, &
 s2m, &
 s2m_k, &
 clwscheme, &
 icecloud, &
 p, &
 p_k, &
 t, &
 t_k, &
 gas_units, &
 mmr_cldaer, &
 gas_id, &
 gases, &
 gases_k, &
 aer_phangle, &
 aer_asb, &
 aer_legcoef, &
 aer_pha, &
 cld_phangle, &
 cld_asb, &
 cld_legcoef, &
 cld_pha, &
 surfemisrefl, &
 surfemisrefl_k, &
 btrefl, &
 rads, &
 bt_k, &
 rads_k, &
 nchannels, &
 ngases, &
 nlevels, &
 nprofiles, &
 aer_nphangle, &
 aer_nmom, &
 cld_nphangle, &
 cld_nmom)

The K variables are exactly the same as those described in section 3.5 above. Note that the explicit

23

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

optical properties have not been implemented as “active” variables in the K model wrapper so
Jacobians are not calculated for them.

3.8. Calling the RTTOV-SCATT direct model

This applies only to MW sensors. You should see section 8.7 of the user guide which describes
RTTOV-SCATT and also Annex O which describes the options and additional input data relevant to
RTTOV-SCATT. A Mietable file must have been specified and loaded alongside the optical depth
coefficient file. RTTOV-SCATT requires that all channels are read from the coefficient file
when the instrument is loaded. If a Mietable file has been specified the wrapper enforces this and
will print a warning if you supplied a channel_list to rttov_load_inst.

This interface is similar in many ways to the direct model interface described in section 3.4.
However as this is specifically for MW simulations some irrelevant profile variables are omitted.

rttov_scatt_call_direct(&
 err, &
 inst_id, &
 channel_list, &
 datetimes, &
 angles, &
 surfgeom, &
 surftype, &
 skin, &
 s2m, &
 zeeman, &
 p, &
 t, &
 gas_units, &
 gas_id, &
 gases, &
 ph, &
 cfrac, &
 use_totalice, &
 mmr_snowrain, &
 surfemis, &
 bt, &
 nchannels, &
 ngases, &
 nlevels, &
 nprofiles)

The following table details only those inputs which differ to the direct model call described in
section 3.4. See the user guide for more information about RTTOV-SCATT inputs.

Argument Type Intent Description

angles(nprofiles,2) Real in (zenangle, azangle) for each profile.

surftype(nprofiles) Integer in skin%surftype for each profile.

skin(nprofiles,8) Real in (skin%t, skin%salinity, skin%foam_fraction, skin
%fastem(1:5)) for each profile.

24

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

s2m(nprofiles,5) Real in (s2m%p, s2m%t, s2m%q, s2m%u, s2m%v) for each profile.

zeeman(nprofiles,2) Real in (Be, cosbk) for each profile.

gas_id(ngases) Integer in List of IDs for water vapour, cloud and hydrometeors present
in the gases array, see below.

gases(ngases,nprofiles,nlevels) Real in Water vapour, cloud and hydrometeor concentrations on levels
for each profile: must contain at least water vapour profiles,
see below.

ph(nprofiles,nlevels+1) Real in Pressure half-levels (see user guide).

cfrac(nprofiles) Real inout User-specified cloud fraction, only used if opts_scatt
%lusercfrac is true, otherwise contains the values calculated
by RTTOV-SCATT on exit (see user guide).

use_totalice Integer in 1 => use Totalice for combined frozen hydrometeor input;
0 => use separate cloud ice water and solid precip inputs (see
user guide).

mmr_snowrain Integer in 1 => snow/rain units are kg/kg; 0 => snow/rain units are
kg/m2/s (see user guide).

surfemis(nprofiles,nchannels) Real inout Input surface emissivity values for each channel; on output
contains the values used by RTTOV.

bt(nprofiles,nchannels) Real inout Output total TOA brightness temperatures.

Notes:

RTTOV-SCATT does not produce transmittance outputs or radiance outputs and as such the
“store_trans” and “store_rad2” options have no effect. If the “store_rad” option is true you can
access only the bt, bt_clear and quality outputs. If the “store_emis_terms” option is true you can
access the additional emissivity retrieval radiance and transmittance outputs.

As surface BRDFs are not relevant to MW simulations only emissivity is an input. Aside from the
difference in the shape of the array, this operates in exactly the same way as for the standard
RTTOV calls and you can use the MW emissivity atlases with RTTOV-SCATT in the same way.

The gas_id and gases arrays are populated as described in section 3.4. For RTTOV-SCATT only
water vapour (mandatory) and the RTTOV-SCATT cloud and hydrometeor gas IDs (see appendix
A) will be used: any other inputs present in the gases array will be ignored. The totalice input, if
present, is only used if the use_totalice flag is set. Otherwise, if present, the cloud ice water and sp
(solid precip) inputs will be used.

3.9. Calling the RTTOV-SCATT K model

This is very similar to the K model interface described above in section 3.5 and shares many
arguments with the RTTOV-SCATT direct model interface described in the previous section.

rttov_scatt_call_k(&
 err, &
 inst_id, &
 channel_list, &
 datetimes, &

25

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

 angles, &
 surfgeom, &
 surftype, &
 skin, &
 skin_k, &
 s2m, &
 s2m_k, &
 zeeman, &
 p, &
 p_k, &
 t, &
 t_k, &
 gas_units, &
 gas_id, &
 gases, &
 gases_k, &
 ph, &
 ph_k, &
 cfrac, &
 cfrac_k, &
 use_totalice, &
 mmr_snowrain, &
 surfemis, &
 surfemis_k, &
 bt, &
 bt_k, &
 nchannels, &
 ngases, &
 nlevels, &
 nprofiles)

The following table lists only those inputs which are not present in the interface to the RTTOV-
SCATT direct model interface:

Argument Type Intent Description

skin_k(nprofiles,nchannels,8) Real inout Calculated Jacobians for (skin%t, skin%salinity, skin
%foam_fraction, skin%fastem(1:5)).

s2m_k(nprofiles,nchannels,5) Real inout Calculated Jacobians for (s2m%p, s2m%t, s2m%q, s2m%u,
s2m%v).

p_k(nprofiles,nchannels,nlevels) Real inout Calculated Jacobians for pressure.

t_k(nprofiles,nchannels,nlevels) Real inout Calculated Jacobians for temperature.

gases_k(ngases,nprofiles,nchannels,n
levels)

Real inout Calculated Jacobians for water vapour, cloud, and
hydrometeors, variable order matches the input gas_id and
gases arrays, see above.

ph_k(nprofiles,nchannels,nlevels) Real inout Calculated Jacobians for pressure half-levels.

cfrac_k(nprofiles,nchannels) Real inout Calculated Jacobians for user-specified cloud fraction.

surfemis_k(nprofiles,nchannels) Real inout Calculated Jacobians for surface emissivity.

bt_k(nprofiles,nchannels) Real in Input BT perturbations.

26

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

3.10. Deallocating memory

When you have finished calling RTTOV you should make a call to release the memory allocated by
the wrapper.

If you simply wish to free all memory allocated by the wrapper for all loaded instruments and
atlases you can call:

rttov_drop_all(err)

Here err is the usual intent(out) return code (non-zero implies an error condition).

Alternatively you can deallocate memory for specific instruments or atlases.

You can deallocate the memory for a single instrument using:

rttov_drop_inst(err, inst_id)

Again err is the return code and inst_id is the ID of the instrument to deallocate.

You can deallocate memory for a specific atlas using:

rttov_drop_atlas(err, atlas_wrap_id)

The atlas_wrap_id argument is the wrapper ID for previously loaded atlas data and err is the return
code.

27

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

4. Specific information for Python
By default integers are 32-bit (e.g. numpy.int32) and reals are 64-bit (e.g. numpy.float64).

The error return code arguments (err) which are INTENT(OUT) appear as return values to the
Python function call and as such do not appear among the function arguments. This also applies to
inst_id in calls to rttov_load_inst.

In addition the array size arguments listed in section 3 are implicit in the Python interface: they are
calculated from the dimensions of the input arrays and do not appear among the function arguments.

For example in Python the wrapper initialisation call looks like this:

> inst_id = rttov_load_inst(opts_str, channels)

Note inst_id is the return value and nchannels is implicitly determined from len(channels) by the
interface and is not present as an argument.

You should declare all Python arrays with array indices in the opposite order to those listed in
this document. You may also want to ensure they are in Fortran-contiguous order in memory by
supplying the order='F' argument to the Numpy array initialisation calls. The example code provides
illustrations of how to declare array arguments.

5. Specific information for C/C++
By default integers are 32-bit (e.g. C int) and reals are 64-bit (e.g. C double).

When passing a character string argument to Fortran from C/C++ it is necessary to include the
string length as an additional argument. Usually this is appended as the final argument in the call,
but for some compilers it may need to be supplied directly following the string argument. See the
example C and C++ code: this applies to rttov_load_inst, rttov_set_options and the
atlas initialisation subroutines.

The C-style array index ordering is opposite to that used in Fortran. You should allocate arrays with
dimensions as shown in this document to ensure data is passed correctly between your C or C++
code and the RTTOV Fortran code.

All interface subroutine names should have an underscore appended '_' as in
src/wrapper/rttov_c_interface.h. See this header file for interfaces to all wrapper subroutines.

28

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

6. RTTOV classes
C++ object-oriented interface

A number of C++ classes have been created in order to provide an object-oriented interface to
RTTOV: Rttov, RttovSafe, RttovScatt, RttovScattSafe, Options, Profiles, Profile, ProfilesScatt,
ProfileScatt and Atlas.

RttovSafe and Rttov are the primary classes used to call RTTOV: one instance of either class is
associated with one instrument.

The Rttov object is a fast way to call RTTOV and would usually be associated with a Profiles
instance which represent one or more RTTOV profiles structures in the form of a collection of
arrays.

The RttovSafe object provides a safer way to call RTTOV because it carries out some checks on the
input profiles before passing them to the RTTOV interface (see below). This is a more user-friendly,
but (very slightly) less efficient way to call RTTOV. It is associated with a C++ vector of one or
more instances of the Profile object each of which represents a single RTTOV profile structure.

The following diagram illustrates the relationship between the classes:

The Profile object is designed to handle one vertical profile which is the smallest possible input on
which to run RTTOV. The private members of the Profile objects are vectors which are safer to use
than pointers, and the methods allow the user to populate the Profile instance in a friendly way with
vectors as entries, or separate values (like with the setAngles method). This is in contrast to the
Profiles object used with the Rttov class which uses pointers to manage profile data.

29

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

The association between the RttovSafe instance and the Profile object instance is made with the
RttovSafe.setTheProfile method. This methods takes as argument a vector of instances of the
Profile object. The other methods of the RttovSafe class are inherited from the Rttov class.

The RttovSafe.setTheProfiles method makes the following checks:
• ensures the input is a vector of Profile objects
• ensures the vector is not empty
• ensure all the profiles have the same number of levels
• if pressure is not filled for the first profile:

◦ ensure the number of levels of the profile is the same of the number of levels of the
coefficient file: in this case the pressures levels of the coefficient file are used.

• check if all Profile objects in the input vector have the same content (gas, aerosols, and
clouds), gas_units, mm_cld_clear

• for each profile of the input vector call the check method of the Profile object.

The Profile.check method makes the following checks:
• ensures all mandatory fields are provided, but does not perform a check upon the values

(this is done within RTTOV itself)
• if simplecoud, clwscheme, icecloud or zeeman have not been set initialise them with default

values.

Each Rttov and RttovSafe object is associated with an instance of the Options class which
represents the RTTOV options structure and also some additional options specific to the wrapper.

It is also possible to use the RTTOV land surface emissivity and BRDF atlases through the Atlas
object: this is used to obtain emissivity and BRDF values which can be passed to an Rttov or
RttovSafe object.

The RttovScatt and RttovScattSafe classes are used when calling RTTOV-SCATT for MW
scattering simulations. These are quite similar to Rttov and RttovSafe and the descriptions which
follow apply equally to all four classes except where it explicitly states otherwise. The
ProfilesScatt and ProfileScatt classes are used for defining profile data which can be associated
with the RttovScatt and RttovScattSafe classes.

In reading the descriptions of the classes below you should refer to the user guide to understand the
RTTOV input and output structures including the options and profiles structures and other aspects
of RTTOV such as the treatment of surface emissivity and BRDF. You should also refer to the
example code in the wrapper/ directory which provides examples of using these classes.

All classes and associated enumerations are defined within the rttov:: namespace.

The following documentation for these classes assumes you are familiar with C++ programming.

30

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Python pyrttov package

The Python implementation of the object-oriented interface follows the C++ version closely, but
there are some important differences:

• to use the package it needs to be in your $PYTHONPATH (or the current directory) and you
can just use import pyrttov.

• the pyrttov package includes only Options, Profiles, ProfilesScatt, Rttov, RttovScatt and
Atlas classes. The classes carry out a lot of checks so there is no need for the “safe” versions
as in the C++ interface.

• there are no get/set methods to return or specify options, profile variables and outputs.
Instead you can refer to the members directly. The member names are identical to those for
the C++ classes with the “get”/”set” omitted (see the following sections for examples and
also the example code provided).

Note that for the pyrttov package the array index ordering is the same as the C/C++ ordering
(which is contrary to the order required by the Python interface described in sections 3 and 4
above). Therefore the array ordering is the same for the C++ and Python classes.

The following sections describe both the C++ and Python classes. Where the documentation
mentions the “Rttov or RttovSafe” classes, in Python this means just the Rttov class. Where there
are important differences between the Python and C++ these are highlighted, but note that where the
documentation refers to get/set methods these apply to the C++ classes and in the Python you use
the member variable directly (same name omitting “get”/”set”) to return data (“get”) or to assign
values (“set”). Where the RttovScatt or RttovScattSafe classes differ to Rttov/RttovSafe, this is
highlighted, otherwise the descriptions also apply to the RTTOV-SCATT classes.

6.1. General method for calling RTTOV

An instance, say “myRttov”, of either the Rttov or RttovSafe classes (C++) or the Rttov class
(Python) should be declared. Each such instance represents a single instrument to simulate. The
methods of the RttovSafe and Rttov C++ classes are given in Appendix C: the majority of methods
are common to both classes. The difference is in the way the profile data are associated with
instances of each class. The methods and members of the Python Rttov class are also given in
Appendix C. The RttovScatt and RttovScattSafe methods and members are given in Appendix D.

The general steps for calling RTTOV via the object-oriented interface are similar to those described
in the user guide. This typically involves:

• setting the RTTOV options

• loading an instrument

• optionally initialising the emissivity and/or BRDF atlases

• specifying the surface emissivities and reflectances

• specifying the profile data to simulate

31

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

• calling RTTOV

• accessing the simulation outputs

• deallocating memory

Each of these steps is described in more detail below.

6.2. Setting RTTOV options

This myRttov object has a member named “options” (C++) or “Options” (Python) which is an
instance of the Options class. This is used to specify the RTTOV and wrapper-specific options. The
methods (C++) and members (Python) of this class are listed in Appendix I. The user guide
describes the RTTOV options (see Annex O). See section 3.1 above for a description of the
wrapper-specific options. RTTOV-SCATT exposes only a subset of options to the user (see Annex
O of the user guide). These are also available through the Options class (appendix I).

In C++: to change an option associated with an Rttov/RttovSafe instance named “myRttov” you
should use, for example:

myRttov.options.setApplyRegLimits(true);

In Python the equivalent statement is:

myRttov.Options.ApplyRegLimits = True

6.3. Loading an instrument

The name of the optical depth (“rtcoef_”) coefficient file should be specified by calling the
myRttov.setFileCoef method (C++) or assigning to myRttov.FileCoef (Python). If required the IR
cloud and/or aerosol coefficient file names should also be specified using the setFileSccld and
setFileScaer methods respectively. For MFASIS simulations the MFASIS LUT should be specified
using setFileMfasisCld. For RTTOV-SCATT simulations the Mietable filename must be specified
using the setFileMietable method: this is compulsory with RttovScatt/RttovScattSafe objects.

The coefficients are read in by calling the myRttov.loadInst method. If called without arguments
all channels are read from the coefficient file. Alternatively a C++ vector/numpy array of channel
numbers may be specified in order to read coefficients for a subset of channels. Note that if a subset
of n channels is read, they are referenced by numbers 1...n subsequently rather than by their original
channel numbers as described in the RTTOV user guide. For RTTOV-SCATT all channels must be
read so there is no channel list argument available to the loadInst method of
RttovScatt/RttovScattSafe.

After an instrument has been loaded the options can be changed. If you call the
myRttov.updateOptions method and the wrapper “check_opts” option is set to true this will force
a consistency check on the options and loaded coefficients and will report any errors which can be
useful for debugging simulations. The myRttov.printOptions method will print out the options
structure (this calls the rttov_print_opts or rttov_print_opts_scatt Fortran subroutines). Note that
changing the coefficient filename(s) after loading the instrument will have no effect.

32

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

6.4. Specifying surface emissivities and reflectances

You can pass your own values for surface emissivity and/or reflectance into RTTOV or RTTOV can
provide suitable values. The user guide provides full details of the treatment of surface emissivity
and reflectance. You should declare an array surfemisrefl with dimensions [2][nprofiles]
[nchannels].This should be initialised before every call to RTTOV. The first dimension of this array
provides access to emissivities (index 0) and reflectances (index 1) for all channels and profiles
being simulated. Where values in this input array are greater than or equal to zero the corresponding
elements of the RTTOV calcemis and calcrefl arrays will be set to false and these input values of
the surface parameters will be used for the simulations. Where the values in surfemisrefl are less
than zero the corresponding elements of the RTTOV calcemis and calcrefl arrays will be set to true
and RTTOV will provide values using its internal models (see the user guide for more details).

The emissivity and BRDF atlases can be used to provide input values: this is described in the next
section.

The surfemisrefl array is associated with the myRttov instance using the setSurfEmisRefl method
(C++) or assigning to the SurfEmisRefl member (Python).

After RTTOV has been called the surfemisrefl array contains the values that were used by RTTOV.
Where you supplied non-negative values the elements of the array will be unchanged. This can be
accessed via the getSurfEmisRefl method (C++) or via the SurfEmisRefl member (Python).

NB When making multiple calls to RTTOV be sure to re-initialise the surfemisrefl array
appropriately between calls to avoid inadvertently passing in emissivity and BRDF values from
the previous call.

When using pyrttov it is not mandatory to specify myRttov.SurfEmisRefl before calling RTTOV.
If it is not specified then it is equivalent to setting calcemis and calcrefl to true for all channels.
After calling RTTOV myRttov.SurfEmisRefl contains the values used by RTTOV. If you have
assigned an array to SurfEmisRefl and you wish to delete this before making another call to
RTTOV you can use

del myRttov.SurfEmisRefl

For RTTOV-SCATT simulations surface BRDFs are not required. For the RttovScatt/
RttovScattSafe classes the corresponding methods are setSurfEmis, getSurfEmis (C++) and
SurfEmis (Python). In this case the arrays have dimensions [nprofiles][nchannels]. In all other
respects the surface emissivity inputs behave the same as in the Rttov/RttovSafe classes including
use of the emissivity atlases (see below).

33

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

6.5. Using the emissivity and BRDF atlases

An instance, say “myAtlas”, of the Atlas class can be declared. Each such instance is used to
contain data from one of RTTOV's atlases for a specific month and, where relevant, for a specific
instrument. Unlike previous versions of RTTOV, any combination of atlases and months can be
used: each Atlas object is independent. The methods and members of the Atlas class are described
in Appendix J. You should also read the relevant section of the user guide to understand what
atlases are available and how they work.

Loading atlas data

The path to the atlas data to be loaded must first be specified via the setAtlasPath method (C++) or
the AtlasPath member (Python).

The atlas data are then read via one of three methods: loadBrdfAtlas, loadIrEmisAtlas or
loadMwEmisAtlas. In each case the month of the data to be loaded is specified. The atlas_id
argument is used to specify which of the available atlases of the relevant type is to be loaded. The
load methods return a Boolean value indicating success (true) or failure (false).

The BRDF and IR emissivity atlases can optionally be loaded for a specific instrument (in which
case access to the atlases is significantly faster) and the CNRM MW emissivity atlas must be loaded
for a specific instrument. The instrument is specified by passing an Rttov/RttovSafe object to the
relevant load method. The instrument itself must have been loaded before the Atlas object is
initialised.

If you wish to use the BRDF or IR emissivity atlas data with any compatible instrument then do not
pass an Rttov/RttovSafe object to the Atlas load method. The TELSEM2 MW atlas is never
initialised for use with a specific instrument and in this case any Rttov/RttovSafe object passed to
the load method is ignored.

Obtaining emissivitiy/BRDF values

The process for returning emissivity/BRDF differs between C++ and Python:

In C++ the fillEmisBrdf method is used: this requires you to allocate a suitable array (for example
the surfemisrefl array used by the Rttov and RttovSafe objects). A pointer to this array is passed to
the subroutine and the array is filled with values from the atlas.

In Python the getEmisBrdf method is used: this returns a two-dimensional array of size [nprofiles]
[nchannels] containing the emissivity or BRDF values.

In both cases you must also pass an Rttov/RttovSafe object to the getEmisBrdf method: the
instrument must have been loaded and it must have one or more profiles associated with it. The
profile data are used when retrieving emissivities/BRDFs from the atlas: see the user guide for
information on which profile variables are used by each atlas. You can also optionally specify a
channel list (in C++ this is a vector of ints): this should usually match the channel list you will pass
into the call to RTTOV (see below). If the channel list is omitted, emissivity/BRDF values are
returned for all channels of the loaded instrument.

34

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

The various atlases behave differently for profiles with different surface types (specified in
profiles(:)%skin%surftype in the Fortran). This is described in the user guide. To provide more
control over the atlases, the Atlas object has three flags: IncLand, IncSea and IncSeaIce which
can be accessed via get/set methods in C++ or accessed directly in Python as usual. When one or
more of these flags is true the atlas will be called for profiles with the corresponding surface type
and any returned values will be output in the emissivity/BRDF array. If the flag is false then
emissivities/BRDFs for profiles of that surface type will be left as they are by the call to
fillEmisBrdf (C++) or will be filled with negative values in the array returned by getEmisBrdf
(Python). By default all three flags are true so the atlases are called for all profiles.

Deallocating atlas data

When the Atlas destructor is called any associated data is deallocated so you do not have to worry
about deallocating data manually. However you can deallocate the data in an Atlas object so that it
can be re-used by calling the dropAtlas method.

6.6. Profile data for an RttovSafe object (C++ only)

The Profile class represents a single RTTOV profile structure. It is used to provide the atmospheric
and surface variables to the RttovSafe instance in the form of a C++ vector of Profile objects. The
methods of the Profile class are given in Appendix E.

A Profile object is instantiated as follows, where nlevels is the number of levels for the profile:

rttov::Profile myProfile(nlevels);

You can then use the methods listed in Appendix E to specify the profile variables. Many of these
methods are self-explanatory: for example, the setT method is used to specify the temperature
profile.

When doing visible/IR cloud and/or aerosol simulations the cloud, cfrac and aerosol profiles input
to RTTOV are defined on atmospheric layers. However they must be supplied to the Profile object
as an array of nlevels elements: the final element is ignored.

If you are running aerosol simulations with a standard OPAC or CAMS scaercoef aerosol optical
property file there are specific methods to set each individual aerosol species (e.g. setInso or
setBcar). If you are using a custom scaercoef file then the individual aerosol profiles are specified
using the setUserAerN method. The scaercoef file must not contain more than 30 aerosol species.
Note that you can use this latter method to specify OPAC or CAMS aerosols, but in this case you
must not use the individual methods (setInso, etc) and Jacobians are accessed via getUserAerNK
(see section 6.12).

The setGasUnits method takes an argument of type rttov::gasUnitType which is defined in
wrapper/rttov_common.h. The constants of this enumeration are listed in Appendix K. If
unspecified the default is ppmv over moist air, but a warning is printed if you do not set this
explicitly.

The setAngles, setS2m, setSkin, setSurfType, setSurfGeom and setDateTimes methods must all
be called for every Profile instance. Each of these methods sets a collection of related profile

35

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

variables: the RTTOV user guide provides more information on which variables are required for
particular types of simulations. If an argument to one of these subroutines corresponds to a variable
which is not relevant to your simulations you can set it to zero. The table at the end of section 6.8
lists the variables that must be specified in each array (the order of the variables is important).

The setSimpleCloud, setClwScheme, setIceCloud and setZeeman methods do not need to be
called unless you require the corresponding variables to be specified in your simulations. If
unspecified the Profile object will set the values of the corresponding profile variables to zero (or to
suitable defaults).

If you are not using the RTTOV interpolator you do not need to specify the pressure levels.
Instantiate the Profile object with the same number of levels as the coefficient file is based on
(usually 54 or 101) and the pressure profile from the coefficient file will be used by default unless
you specify a different set of pressure levels using the setP method.

Once a Profile object has been populated with profile data it can be stored in a C++ vector of
Profile objects. For example:

std::vector <rttov::Profile> profiles;
profiles.push_back(myProfile);

This can be repeated for every profile to be simulated. Once the collection of Profile instances is
fully populated it is associated with the RttovSafe instance by calling the myRttov.setTheProfiles
method. This performs some checks on the profiles before RTTOV is called which helps to prevent
errors. It is very important that all profile data are associated with the Profile object before it is
associated with the Rttov/RttovSafe instance.

6.7. Profile data for an RttovScattSafe object (C++ only)

The ProfileScatt class represents a single profile structure for input to RTTOV-SCATT. It is used to
provide the atmospheric and surface variables to the RttovScattSafe instance in the form of a C++
vector of ProfileScatt objects. The methods of the ProfileScatt class are given in Appendix G.

The ProfileScatt class is similar in many ways to the Profile class so most of the description in the
previous section applies here. However since ProfileScatt is used specifically for MW scattering
simulations, not all RTTOV profile variables are relevant, some arrays have slightly different
dimensions and some additional profile variables may be specified. In particular the input cloud and
hydrometeor arrays are defined on nlevels (unlike the case for visible/IR scattering where they are
on nlayers) and the pressure half-levels profile has size (nlevels+1). You must always specify the
pressure levels for RTTOV-SCATT: there is no option to use the optical depth coefficient levels.
Similarly some of the arrays which group profile variables together are different to those in the
Profile class: the table at the end of section 6.9 lists the variables that must be specified in each
array.

The setZeeman method does not have to be called unless you require the corresponding variables
to be specified in your simulations.

Just as for Profile objects, once the collection of ProfileScatt instances is fully populated it is
associated with the RttovScattSafe instance by calling the myRttov.setTheProfiles method. It is
very important that all profile data are associated with the ProfileScatt object before it is associated

36

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

with the RttovScatt/RttovScattSafe instance.

6.8. Profile data for an Rttov object (C++ and Python)

The Profiles class represents one or more RTTOV profile structures. The atmospheric profiles and
other variables are specified as a series of arrays. An instance of the Profiles class is then provided
to the Rttov instance. The methods (C++) and members (Python) of the Profiles class are given in
Appendix F.

A Profiles object is instantiated as follows, where nprofiles is the number of profiles and nlevels is
the number of levels in each profile.

In C++:

rttov::Profiles myProfiles(nprofiles, nlevels);

In Python:

myProfiles = pyrttov.Profiles(nprofiles, nlevels)

In C++ the data for each profile variable is provided to the Profiles instance as a pointer to an array
containing the data for every profile using the relevant method. For example, the setT method
assigns the temperature profiles to the Profiles instance. There are methods for setting profile data
for each trace gas and the pressure levels.

In Python numpy arrays are assigned directly to the member variables of the myProfiles object (e.g.
myProfiles.T = temperature_array for the temperature profiles). Profiles for each trace
gas and the pressure levels can be set in the same way.

For atmospheric profile variables like temperature and gas abundances you must create an array of
size [nprofiles][nlevels] and populate it with the atmospheric profile values for every profile.

When doing visible/IR cloud and/or aerosol simulations the cloud, cfrac and aerosol profiles input
to RTTOV are defined on atmospheric layers. However they must be supplied to the Profiles object
as arrays of [nprofiles][nlevels] elements (as for temperature and gases): the final element of each
profile is ignored.

In C++ to supply the cloud and aerosol profiles you must use the setGasItem method which takes
the profile as input and an ID for the profile variable being set. This second argument is of type
rttov::itemIdType: this enumeration is defined in wrapper/rttov_common.h and a complete list of
the associated constants is given in Appendix H. (You can also set the gas profiles using this
method, but it is clearer to use the methods like setQ which are particular to each gas).

In Python there is no equivalent to setGasItem: the individual cloud and aerosol profile variables
can be assigned directly by name. For example, myProfiles.Cfrac = cfrac (cloud fraction),
myProfiles.Cirr = ciw (cloud ice water), myProfiles.Inso = aer_inso (insoluble aerosol). For
aerosols this applies to both OPAC and CAMS scaercoef aerosol optical property files. If you are
running simulations with a custom scaercoef file you can either use the AerN (N=1,2,...,30)
members of Profiles or the setUserAerN method. The scaercoef file must not contain more than 30
aerosol species. Note that you can use this latter approach (AerN/setUserAerN) to specify OPAC
or CAMS aerosols, but in this case you must not use the individual members (Inso, etc) and

37

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Jacobians are accessed via getUserAerNK or AerNK (see section 6.12).

The setGasUnits method takes an integer argument: see the RTTOV user guide for valid values. If
unspecified the default is ppmv over moist air.

In C++ the setAngles, setS2m, setSkin, setSurfType, setSurfGeom and setDateTimes methods
must all be called for each Profiles instance in C++. Each of these methods sets a collection of
related profile variables. The argument to each method is a two dimensional array (see Appendix F).
The first dimension is nprofiles, and the second dimension depends on the number of variables
being set by each method (see table below). The RTTOV user guide provides more information on
which variables are required for particular types of simulations: if an element of an array argument
to one of these subroutines corresponds to a variable which is not relevant to your simulations you
can set it to zero.

The setSimpleCloud, setClwScheme, setIceCloud and setZeeman methods do not need to be
called unless you require the corresponding variables to be specified in your simulations. If
unspecified the Profiles object will set the values of the corresponding profile variables to zero (or
to suitable defaults).

In Python the same applies except that the equivalent member arrays (Angles, S2m, SimpleCloud,
etc) are assigned for each Profiles instance rather than via a method call.

If you are not using the RTTOV interpolator you do not need to specify the pressure levels.
Instantiate the Profiles object with the same number of levels as the coefficient file is based on
(usually 54 or 101) and the pressure profile from the coefficient file will be used by default unless
you specify an array containing different pressure levels using the setP method (C++) or assign
pressure levels to the P member (Python).

Once all the necessary profile data have been specified in the Profiles instance it can be associated
with the RttovSafe or Rttov instance. In C++ this is done using the myRttov.setProfiles method.
No checks are made on the the profile data before RTTOV is called so you must ensure that it
conforms to the requirements of RTTOV and the wrapper interface. In Python you can simply
assign the myProfiles object to the myRttov.Profiles member: in contrast to the C++ classes,
pyrttov does carry out checks on the profile (and other) data as you assign values. For C++ only i t
is very important that all profile data are associated with the Profiles object before it is associated
with the Rttov/RttovSafe instance.

In C++ once you have called RTTOV for the profiles it is up to you to deallocate the arrays which
you associated with the Profiles instance using the “set” methods: these are not deallocated by the
Profiles destructor. This is not an issue in Python as the garbage collection handles this
automatically.

38

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

The following table gives the dimensions and profile variable list which should be specified in each
input array. See the user guide for more information on which profile variables are used for each
type of simulation (e.g. MW, IR, solar-affected, scattering, etc) Unused variables can be set to zero.

Array Type Dimensions* Mandatory/
Optional

Variable list

DateTimes Integer [nprofiles][6] Mandatory (year, month, day, hour, minute, second) per profile
(The full date will be used to calculate the TOA solar
irradiance for solar-affected simulations. The time is not
currently used by RTTOV so can be zero).

Angles Real [nprofiles][4] Mandatory (zenangle, azangle, sunzenangle, sunazangle) per profile

SurfGeom Real [nprofiles][3] Mandatory (latitude, longitude, elevation) per profile

SurfType Integer [nprofiles][2] Mandatory (skin%surftype, skin%watertype) per profile

Skin Real [nprofiles][10] Mandatory (skin%t, skin%salinity, skin%snow_fraction, skin
%foam_fraction, skin%fastem(1:5), skin%specularity) per
profile

S2m Real [nprofiles][6] Mandatory (s2m%p, s2m%t, s2m%q, s2m%u, s2m%v, s2m%wfetc) per
profile

SimpleCloud Real [nprofiles][2] Optional (ctp, cfraction) per profile

ClwScheme Integer [nprofiles] Optional Visible/IR clw_scheme per profile

IceCloud Integer [nprofiles][2] Optional (ice_scheme, idg) per profile

Zeeman Real [nprofiles][2] Optional (Be, cosbk) per profile

*For the C++ Profile class the arrays are specified for each profile separately so there is no
[nprofiles] dimension. For the C++ and Python Profiles classes the data are specified for all
profiles together in a single array.

6.9. Profile data for an RttovScatt object (C++ and Python)

The ProfilesScatt class represents one or more profile structures for input to RTTOV-SCATT. The
atmospheric profiles and other variables are specified as a series of arrays. An instance of the
ProfilesScatt class is then provided to the RttovScatt instance. The methods (C++) and members
(Python) of the ProfilesScatt class are given in Appendix H.

The ProfilesScatt class is similar in many ways to the Profiles class so most of the description in the
previous section applies here. However since ProfilesScatt is used specifically for MW scattering
simulations, not all RTTOV profile variables are relevant, some arrays have slightly different
dimensions and some additional profile variables may be specified. In particular the input cloud and
hydrometeor arrays are defined on nlevels (unlike the case for visible/IR scattering where they are
on nlayers) and the pressure half-levels profile has size (nlevels+1). You must always specify the
pressure levels for RTTOV-SCATT: there is no option to use the optical depth coefficient levels.
Similarly some of the arrays which group profile variables together are different to those in the
Profiles class: the table below lists these arrays.

Just as for Profiles objects, you associate a populated ProfilesScatt instance with an

39

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

RttovScatt/RttovScattSafe instance using the setProfiles method (C++) or by directly assigning to
the Profiles member (Python). For C++ only it is very important that all profile data are associated
with the ProfilesScatt object before it is associated with the RttovScatt/RttovScattSafe instance.

The following table gives the dimensions and profile variable list which should be specified in each
input array.

Array Type Dimensions* Mandatory/
Optional

Variable list

DateTimes Integer [nprofiles][6] Mandatory (year, month, day, hour, minute, second) per profile
(This is not currently used in the interface and can be zero: it is
included as it may be used in the future).

Angles Real [nprofiles][2] Mandatory (zenangle, azangle) per profile

SurfGeom Real [nprofiles][3] Mandatory (latitude, longitude, elevation) per profile

SurfType Integer [nprofiles] Mandatory skin%surftype per profile

Skin Real [nprofiles][8] Mandatory (skin%t, skin%salinity, skin%foam_fraction, skin%fastem(1:5))
per profile

S2m Real [nprofiles][5] Mandatory (s2m%p, s2m%t, s2m%q, s2m%u, s2m%v) per profile

Zeeman Real [nprofiles][2] Optional (Be, cosbk) per profile

*For the C++ ProfileScatt class the arrays are specified for each profile separately so there is no
[nprofiles] dimension. For the C++ and Python ProfilesScatt classes the data are specified for all
profiles together in a single array.

6.10. Specifying explicit cloud/aerosol optical properties for visible/IR
scattering simulations

This section applies to visible/IR aerosol/cloud scattering simulations using “method 2” as
described in sections 8.5 and 8.6 of the user guide: you should read these sections in order to
understand the RTTOV scattering options and inputs.

These simulations are run using Rttov/RttovSafe objects (this does not apply to
RttovScatt/RttovScattSafe objects). They are activated by setting the AddClouds or AddAerosl (or
both) options to true and the corresponding UserCldOptParam or UserAerOptParam (or both)
options to true.

Separate optical property inputs are available for clouds and aerosols. The optical properties are
provided in the same way for both. The only difference is that for cloudy simulations you must
specify a profile of cloud fractions (cfrac) in the Profile or Profiles object associated with the
Rttov/RttovSafe object whereas this is not required for aerosols.

If aerosols are not active you do not need to specify any aerosol optical property inputs, and
likewise for clouds. Also note that you can specify optical properties for clouds and use the pre-
defined aerosol particle types from the coefficient file (as described above) or vice versa.

40

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Optical properties are specified for every layer for every channel being simulated for every profile.
It is important that in the arguments described below the optical properties are defined for the same
channels being simulated in the call to RTTOV (see the next section).

The optical property parameters are listed in the following table.

Argument Type Description

asb[3][nprofiles][nchannels][nlayers] Real Absorption coefficients (cld_asb(1,:,:,:)), scattering
coefficients (cld_asb(2,:,:,:)) and bpr parameters
(cld_asb(3,:,:,:)). The absorption and scattering coefficients
are required in all cases, units km-1. The bpr values are only
required for IR channels when Chou-scaling is used: they can
be zero otherwise. See below for how to calculate bpr values.

phangle[nphangle] Real Angle grid on which phase functions are defined (degrees).
First value must be 0° and final value must be 180°. Only
required for solar-affected channels when opts%rt_ir
%addsolar is true (i.e. when solar radiation is included).

pha[nprofiles][nchannels][nlayers]
[nphangle]

Real Azimuthally-averaged phase functions normalised such that
the integral over all scattering angles is 4π. Phase functions
are only required for solar-affected channels when opts%rt_ir
%addsolar is true (i.e. when solar radiation is included).

legcoef[nprofiles][nchannels][nlayers]
[nmom+1]

Real Legendre coefficients corresponding to each phase function.
Note the final dimension is nmom+1: this is consistent with
the RTTOV internal structures: the “zeroth” coefficient is
always 1. Legendre coefficients are only required for all
channels for which the DOM solver is being used. See below
for how to calculate Legendre coefficients.

The relevant methods of the Rttov/RttovSafe objects for specifying optical properties are listed in
Appendix C. The only mandatory input is the asb array containing the absorption and scattering
coefficients. This is assigned to the Rttov/RttovSafe object using the setCldAsb/setAerAsb
methods (C++) or directly assigning to the CldAsb/AerAsb members (Python). The absorption and
scattering coefficients must be supplied for all layers, channels and profiles. For any channels for
which Chou-scaling is not being used the bpr values may be zero. In the case where Chou-scaling is
being used and solar radiation is not included no other optical property inputs need to be specified.

If solar radiation is enabled you must specify phase functions for solar affected channels in all
layers containing scattering particles. In addition the grid of angles on which the phase functions are
defined must also be specified. In C++ these are set together using the setCldPha/setAerPha
method. In Python the phase angles and phase functions are assigned directly to the
CldPhangle/AerPhangle and CldPha/AerPha members.

If the DOM solver is being used you must specify the Legendre coeffiicients corresponding to the
phase functions: this applies to all channels (not only solar-affected ones). In C++ the
setCldLegcoef/setAerLegcoef method is used and in Python the coefficients are assigned directly
to the CldLegcoef/AerLegcoef members. Notice that the final dimension of the Legendre
coefficient array is (nmom+1). The value of nmom must equal or exceed the number of DOM
streams you are using in the simulations (there is no advantage to providing more coefficients than

41

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

this unless you are changing the number of DOM streams). For layers containing no cloud/aerosol
the phase function values and Legendre coefficients can be zero.

RTTOV provides subroutines to calculate bpr values and Legendre coefficients from phase
functions: this is achieved via the calcBpr and calcLegcoef methods whose interfaces are described
in Appendix C. The subroutine to calculate the bpr values in particular is relatively slow and you
may wish to run this off-line and store the bpr values required for your simulations. The subroutine
in RTTOV is OpenMP-enabled: if you compiled RTTOV with OpenMP then the number of threads
specified in the wrapper options will be used when calling calcBpr.

6.11. Calling RTTOV

The RTTOV direct model is run by calling the myRttov.runDirect method. There are two
interfaces for this method: if called without arguments all channels that were loaded will be
simulated. Otherwise a list of channel numbers to simulate may be supplied.

The RTTOV K (Jacobian) model is run by calling the myRttov.runK method. As for the direct
model this can be called for all channels (no arguments) or for a subset of loaded channels (by
specifying the list of channel numbers). The input perturbation is set to 1 for brightness
temperatures and radiances in all channels (see the user guide for details about the K model). Note
that there is no difference in how you set up the input data for the direct and K models: they require
the same inputs. The only difference is that after running the K model, the additional Jacobian
outputs are available.

You can specify a large number of profiles in an Rttov/RttovSafe instance. When RTTOV is called
on the profiles, the number of profiles passed into RTTOV per call is defined in the wrapper option
“nprofs_per_call” which is specified by the setNprofsPerCall method of the Options class (C++)
or the NprofsPerCall member of the Options class (Python). The total number of profiles is
divided into batches of this size and RTTOV is called repeatedly by the wrapper until all profiles
have been simulated. By default nprofs_per_call is 1, but it can be increased to improve
performance especially if RTTOV has been compiled with OpenMP and the nthreads wrapper
option is increased in order to make use of multiple threads.

6.12. Accessing RTTOV outputs

Once RTTOV has been called the output data can be accessed by calling various methods. Note that
this data remains available until RTTOV is called again for the same instrument (using the
runDirect or runK methods for example) at which point it is replaced with the new output.

The simulated radiances can be obtained by calling the myRttov.getRads method. Simulated
brightness temperatures (for channels with wavelengths above 3µm) and reflectances (for other
channels) can be obtained by calling the myRttov.getBtRefl method.

It is also possible to access the full contents of the RTTOV transmission, radiance and radiance2
structures (so long as those member arrays were output by the simulations). You must set the
relevant option flag (store_trans, store_rad, store_rad2) before calling RTTOV otherwise calls to
these methods (C++) or accesses to the members (Python) will throw an exception. In C++ each
method returns a vector of values for a given profile index or for given profile and channel indices

42

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

while in Python you can access the full output array for all channels/profiles. The relevant methods
and members are listed in Appendix C.

For RTTOV-SCATT only BT outputs are available: in this case you can access the cloudy BTs via
the myRttov.getBt method. For RttovScatt/RttovScattSafe objects the store_trans and store_rad2
options have no effect: these outputs are not produced by RTTOV-SCATT. If store_rad is set then
you can access the clear-sky BTs. If store_emis_terms is set then you can also access the emissivity
retrieval outputs from the RTTOV-SCATT direct model.

After calling the RTTOV K model the Jacobians can be obtained through the various methods
/members listed in Appendix C. For example the temperature Jacobians are obtained using the
myRttov.getTK method (C++) which returns the Jacobian for a given channel and profile or
simply by myRttov.TK (Python) which returns the array of Jacobians for all channels and profiles
(dimensions [nprofiles][nchannels][nlevels]).

In C++, to return the Jacobians for gas profiles and (if computed) for clouds and aerosols, the
myRttov.getItemK method is used. The first argument is of type rttov::itemIdType: this
enumeration is defined in wrapper/rttov_common.h and a complete list of the associated constants
is given in Appendix H. For example, to obtain the water vapour Jacobian for the first channel and
the first profile simulated use:

myRttov.getItemK(rttov::Q,0,0)

In Python there is also a getItemK method, but it is easier to reference each Jacobian directly as
myRttov.CH4K (CH4 Jacobian), myRttov.CfracK (cloud fraction Jacobian), myRttov.CirrK (ice
cloud Jacobian), and so on.

If you run aerosol simulations using a custom scaercoef aerosol optical property file you can access
Jacobians using the getItemK method as usual in C++. The Python Rttov class has a
getUserAerNK method which can be used to return the Jacobians for the specified aerosol type or
the Jacobians can be accessed directly via the AerNK members (where N=1,2,..., 30). As indicated
above, the method/members used to access aerosol Jacobians must correspond to the way the
aerosols were specified in the input profile data. For OPAC or CAMS aerosols you must use the
named Jacobian members (InsoK etc) if the named profile members (Inso) were used to specify the
profile data.

Note that, similar to the input profiles, the cloud and aerosol profile Jacobians will be nlevels in size
with a zero in the final element (the first nlayers elements contain the Jacobian).

In C++ many of the methods which return RTTOV outputs take profile and channel indexes as
arguments: these are zero-counted values into the list of profiles and channels simulated. For
example, to return information for the first profile the profile index should be zero, and if you
simulated channels 1, 3 and 5 of an instrument, the indices for these channels in the output are 0, 1
and 2 respectively.

In contrast pyrttov provides access to the whole array of each output for all channels and profiles.

The additional profile variables which are active in the Jacobian model can be accessed via the
getS2mK, getSkinK, getSimpleCloudK methods (C++) or the S2mK, SkinK and SimpleCloudK
members (Python). The order of the variables is the same as for the corresponding input arrays.

43

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

6.13. Deallocating memory

The deallocation of memory associated with an instrument represented by an RttovSafe or Rttov
object is taken care of automatically when an object is destroyed.

7. Limitations of the wrapper
The wrapper currently has the following limitations:

• Not all emissivity/BRDF atlas options and outputs are available (for example standard
deviation/covariance data and quality flags cannot currently be accessed).

• Jacobians of explicit optical properties for visible/IR scattering simulations are not available
via the wrapper of the RTTOV K model.

• Aerosol simulations with user-defined scaercoef aerosol optical property files are supported
up to a maximum of 30 aerosol species.

• PC-RTTOV unavailable.

• HTFRTC unavailable.

• TL/AD models unavailable.

44

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Appendix A: Gas IDs
Gas ID list: these are defined in src/wrapper/rttov_wrapper_handle.F90. See user guide Annex O for
more information about the profile variables and sections 8.5, 8.6 and 8.7 for information about the
cloud and aerosol types.

ID Variable nlevels or nlayers*

1 Water vapour (q) nlevels

2 Ozone (o3) nlevels

3 CO2 nlevels

4 N2O nlevels

5 CO nlevels

6 CH4 nlevels

7 SO2 nlevels

15 Cloud liquid water (clw) – “clear-sky” MW only (not RTTOV-SCATT) nlevels

20 Cloud fraction (cfrac) nlayers

21-25 Cloud liquid water types 1-5 (STCO, STMA, CUCC, CUCP, CUMA) nlayers

30 Ice cloud (CIRR) nlayers

31 Ice cloud effective diameter (icede) nlayers

32 Cloud liquid water effective diameter (clwde) nlayers

41-53 OPAC aerosol particle types 1-13 nlayers

81-89 CAMS aerosol particle types 1-9 nlayers

101-130 User-defined aerosol particle types 1-30 nlayers

60 RTTOV-SCATT CC (cloud cover) nlevels

61 RTTOV-SCATT cloud liquid water (CLW) nlevels

62 RTTOV-SCATT cloud ice water (CIW) nlevels

63 RTTOV-SCATT rain nlevels

64 RTTOV-SCATT solid precip (SP) nlevels

65 RTTOV-SCATT totalice nlevels

*As noted above cloud and aerosol profiles are specified on layers so only the first nlayers values are used, the final
element of the array (nlevels) is ignored.

45

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Appendix B: RTTOV wrapper subroutines
The following table lists the main subroutines in the RTTOV wrapper:

Subroutine Description

rttov_load_inst Specify initial RTTOV and wrapper options and load an instrument

rttov_set_options Modify one or more RTTOV and wrapper options

rttov_print_options Print the current RTTOV and wrapper options

rttov_call_direct Call the RTTOV direct model

rttov_call_k Call the RTTOV K model

rttov_visir_scatt_call_direct Call the RTTOV direct model for visible/IR scattering with explicit optical
properties

rttov_visir_scatt_call_k Call the RTTOV K model for visible/IR scattering with explicit optical
properties

rttov_scatt_call_direct Call the RTTOV-SCATT direct model

rttov_scatt_call_k Call the RTTOV-SCATT K model

rttov_drop_inst Deallocate the data for a specified instrument

rttov_drop_all Deallocate all instrument and atlas data

rttov_load_brdf_atlas
rttov_load_ir_emis_atlas
rttov_load_mw_emis_atlas

Initialise the BRDF and emissivity atlases

rttov_get_emisbrdf Return emissivity/BRDF values from a given atlas

rttov_drop_atlas Deallocate a BRDF or emissivity atlas

rttov_bpr Calculate bpr scattering parameter from given phase function

rttov_legcoef Calculate Legendre coefficients from given phase function

The main subroutine calls to the direct and K models return the simulated radiances and brightness
temperatures (or reflectances) as described above. RTTOV provides a number of other radiance and
transmittance outputs in the transmission, radiance and secondary radiance structures. Each member
of these structures can be made available (provided it was calculated by the simulation) by setting
the store_trans, store_rad, store_rad2 and/or store_emis_terms wrapper options. They can be
accessed via one of the subroutine calls listed below. Note that these outputs are stored
independently for each instrument, but for any given instrument they are overwritten by any
subsequent direct or K model calls for that instrument.

Each subroutine interface is very similar: they all return the usual error status and take the
instrument ID and an array argument of the size given below. For C/C++ calls the array dimensions
must also be passed, but these are implicit for Python calls as described above.

Array sizes of nchanprof refer to nchannels * nprofiles (i.e. the total number of channels being
simulated). From C and C++ you can pass an array of shape (nprofiles, nchannels) instead of one of
shape (nchanprof) if this is more convenient. From Python you can pass an array of shape

46

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

(nchannels, nprofiles). See the example code. An example call from Python is:

> rad_clear = numpy.empty((nchannels,nprofiles), order='F', dtype=numpy.float64)
> err = rttov_get_rad_clear(inst_id, rad_clear)

The following tables list the members of the RTTOV radiance, radiance2, transmission and
emissivity retrieval structures returned: see Annex O in the user guide for more information about
these outputs.

Radiance structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_rad_clear radiance%clear(nchanprof)

rttov_get_rad_total radiance%total(nchanprof) – this is returned in the rads argument to the
rttov_call_* subroutines

rttov_get_rad_cloudy radiance%cloudy(nchanprof)

rttov_get_bt_clear radiance%bt_clear(nchanprof)

rttov_get_bt radiance%bt(nchanprof) – this is returned for IR/MW channels in the btrefl
argument to the rttov_call_* subroutines

rttov_get_refl_clear radiance%refl_clear(nchanprof)

rttov_get_refl radiance%refl(nchanprof) – this is returned for VIS/NIR channels in the btrefl
argument to the rttov_call_* subroutines

rttov_get_overcast radiance%overcast(nchanprof, nlayers)

rttov_get_plane_parallel radiance%plane_parallel – this is a scalar 0/1 (false/true)

rttov_get_rad_quality radiance%quality(nchanprof) – integer array

Radiance2 structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_rad2_up radiance2%up(nchanprof, nlayers)

rttov_get_rad2_down radiance2%down(nchanprof, nlayers)

rttov_get_rad2_surf radiance2%surf(nchanprof, nlayers)

rttov_get_rad2_upclear radiance2%upclear(nchanprof)

rttov_get_rad2_dnclear radiance2%dnclear(nchanprof)

rttov_get_rad2_refldnclear radiance2%refldnclear(nchanprof)

47

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Transmission structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_tau_total transmission%tau_total(nchanprof)

rttov_get_tau_levels transmission%tau_levels(nchanprof, nlevels)

rttov_get_tausun_total_path2 transmission%tausun_total_path2(nchanprof)

rttov_get_tausun_levels_path2 transmission%tausun_levels_path2(nchanprof, nlevels)

rttov_get_tausun_total_path1 transmission%tausun_total_path1(nchanprof)

rttov_get_tausun_levels_path1 transmission%tausun_levels_path1(nchanprof, nlevels)

RTTOV-SCATT emissivity retrieval structure members:

Subroutine Array argument and dimensions in C index order

rttov_get_emis_terms_cfrac emis_terms%cfrac(nchanprof)

rttov_get_emis_terms_bsfc emis_terms%bsfc(nchanprof, nlevels)

rttov_get_emis_terms_tau_cld emis_terms%tau_cld(nchanprof)

rttov_get_emis_terms_up_cld emis_terms%up_cld(nchanprof)

rttov_get_emis_terms_down_cld emis_terms%down_cld(nchanprof)

rttov_get_emis_terms_tau_clr emis_terms%tau_clr(nchanprof)

rttov_get_emis_terms_up_clr emis_terms%up_clr(nchanprof)

rttov_get_emis_terms_down_clr emis_terms%down_clr(nchanprof)

48

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Appendix C: RttovSafe and Rttov classes (C++ and Python)

C++ RttovSafe and Rttov classes

The majority of the methods used for calling RTTOV are the same for both the RttovSafe and
Rttov classes. The only one which differs is the method for associating profile data with the
RttovSafe or Rttov instance.

Constructors:

RttovSafe ()
RttovSafe class constructor method.

Rttov ()
Rttov class constructor method.

Associating profile data with an RttovSafe object:

void setTheProfiles (std::vector< rttov::Profile > &theProfiles)
Associate a vector of Profile objects with this RttovSafe object; carries out checks on profiles before
calling RTTOV to help prevent errors: all profiles must be have the same number of levels with the same
content (gases, clouds, aerosols) and have the same gas_units.

Associating profile data with an Rttov object:

void setProfiles (rttov::Profiles *profiles)
Associate a Profiles object with this Rttov object; this is fast, but does not carry out any checks on
profiles before calling RTTOV.

Methods common to RttovSafe and Rttov classes:

const string & getFileCoef () const
Return the coefficient filename.

const string & getFileSccld () const
Return the cloud coefficient filename.

const string & getFileScaer () const
Return the aerosol coefficient filename.

const string & getFileMfasisCld () const
Return the MFASIS cloud LUT filename.

void setFileCoef (const string &fileCoef)
Set the coefficient filename.

void setFileSccld (const string &fileSccld)
Set the cloud coefficient filename.

void setFileScaer (const string &fileScaer)
Set the aerosol coefficient filename.

void setFileMfasisCld (const string &fileMfasisCld)

49

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Set the MFASIS cloud LUT filename.

void loadInst ()
Load instrument with all channels.

void loadInst (const vector< int > &channels)
Load instrument for a list of channels; the method setFileCoef() must have been called previously.

int getInstId () const
Return the inst_id.

bool isCoeffsLoaded () const
Return true if instrument is loaded.

int getNchannels () const
Return the number of loaded channels.

double * getRefPressures ()
Return the pressure levels of the coefficient file.

int getCoeffsNlevels ()
Return the number of levels of the coefficient file.

double * getWaveNumbers ()
Return the channel central wavenumbers of the coefficient file.

bool isProfileSet () const
Return true if profiles have been associated.

int getNprofiles () const
Return the number of associated profiles.

void updateOptions ()
Update RTTOV options for the currently loaded instrument.

void printOptions ()
Print RTTOV options for the currently loaded instrument.

void setSurfEmisRefl (double *surfemisrefl)
Set pointer to array containing input/output surface emissivity and reflectance values; this must be
previously allocated a double array of dimensions [2][nprofiles][nchannels]; this is used to pass
emissivity/reflectance values into RTTOV; if this is not called the Rttov object will allocate an array
containing the values used by RTTOV which can be accessed by getSurfEmisRefl.

void setAerAsb (double *asb)
Set the aerosol absorption coefs, scattering coefs and bpr parameters.

void setAerPha (int nphangle, double *phangle, double *pha)
Set the aerosol phase functions.

void setAerLegcoef (int nmom, double *legcoef)
Set the aerosol phase function Legendre coefficients.

void setCldAsb (double *asb)
Set the cloud absorption coefs, scattering coefs and bpr parameters.

void setCldPha (int nphangle, double *phangle, double *pha)
Set the cloud phase functions.

void setCldLegcoef (int nmom, double *legcoef)
Set the cloud phase function Legendre coefficients.

50

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

void printGases ()
Print gases array contents on standard output.

void runDirect ()
Run the RTTOV direct model for all channels.

void runDirect (const vector< int > &channels)
Run the RTTOV direct model for a list of channels.

void runK ()
Run the RTTOV K model for all channels.

void runK (const vector< int > &channels)
Run the RTTOV K model for a list of channels.

const double * getBtRefl () const
Return a pointer to an array of dimensions [nprofiles][nchannels] filled with computed brightness
temperatures and reflectances by the previous run; this array is allocated by the Rttov object and is
destroyed when a new run is performed or if the instance is destroyed.

const double * getRads () const
Return a pointer to an array of dimensions [nprofiles][nchannels] filled with computed radiances by the
previous run; this array is allocated by the Rttov object and is destroyed when a new run is performed or
if the instance is destroyed.

std::vector< double > getBtRefl (const int profile)
Return vector of brightness temperatures/reflectances computed by the previous run for the given profile
number.

std::vector< double > getRads (const int profile)
Return a vector of radiances computed by the previous run for the given profile number.

const double * getSurfEmisRefl () const
Return a pointer to an array of dimensions [2][nprofiles][nchannels] containing output values of
surface emissivity and reflectance; this array can be initialised by the user and set by calling the
setSurfEmisRefl method; alternatively if the emissivity/reflectance array is allocated by the Rttov object
it is deleted at the next run or when the Rttov instance is destroyed.

int getAerNphangle () const
Return the number of aerosol phase function angles.

int getAerNmom () const
Return the number of aerosol phase function Legendre coefficients.

const double * getAerAsb () const
Return the aerosol absorption coefs, scattering coefs and bpr parameters.

const double * getAerPhangle () const
Return the aerosol phase function angles.

const double * getAerLegcoef () const
Return the aerosol phase function Legendre coefficients.

const double * getAerPha () const
Return the aerosol phase functions.

int getCldNphangle () const
Return the number of cloud phase function angles.

int getCldNmom () const

51

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Return the number of cloud phase function Legendre coefficients.

const double * getCldAsb () const
Return the cloud absorption coefs, scattering coefs and bpr parameters.

const double * getCldPhangle () const
Return the cloud phase function angles.

const double * getCldLegcoef () const
Return the cloudphase function Legendre coefficients.

const double * getCldPha () const
Return the cloud phase functions.

double calcBpr (int nphangle, double *phangle, double *pha)
Calculate bpr parameter for given phase function.

void calcLegcoef (int nphangle, double *phangle, double *pha, int nmom, double *legcoef, int ngauss)
Calculate Legendre coefficients for given phase function.

std::vector< double > getPK (int profile, int channel)
Return the computed pressure Jacobians for a given profile and channel.

std::vector< double > getTK (int profile, int channel)
Return computed temperature Jacobians for a given profile and channel.

std::vector< double > getSkinK (int profile, int channel)
Return computed skin variable Jacobians for a given profile and channel.

std::vector< double > getS2mK (int profile, int channel)
Return computed 2m variable Jacobian for a given profile and channel.

std::vector< double > getSimpleCloudK (int profile, int channel)
Return computed simple cloud variable Jacobians for a given profile and channel.

std::vector< double > getItemK (rttov::itemIdType, int profile, int channel)
Return computed gas, cloud and aerosol Jacobian values for a given profile and channel.

std::vector< double > getSurfEmisK (int profile)
Return computed surface emissivity Jacobians for a given profile.

std::vector< double > getSurfReflK (int profile)
Return computed surface reflectance Jacobians for a given profile.

std::vector< double > getTauTotal (int profile)
Return RTTOV transmission tau_total output array of size [nchannels] for given profile, requires
store_trans true.

std::vector< double > getTauLevels (int profile, int channel)
Return RTTOV transmission tau_levels output array of size [nlevels] for given profile and channel,
requires store_trans true.

std::vector< double > getTauSunTotalPath1 (int profile)
Return RTTOV transmission tausun_total_path1 output array of size [nchannels] for given profile,
requires store_trans true.

std::vector< double > getTauSunLevelsPath1 (int profile, int channel)
Return RTTOV transmission tausun_levels_path1 output array of size [nlevels] for given profile and
channel, requires store_trans true.

std::vector< double > getTauSunTotalPath2 (int profile)

52

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Return RTTOV transmission tausun_total_path2 output array of size [nchannels] for given profile,
requires store_trans true.

std::vector< double > getTauSunLevelsPath2 (int profile, int channel)
Return RTTOV transmission tausun_levels_path2 output array of size [nlevels] for given profile and
channel, requires store_trans true.

std::vector< double > getRadClear (int profile)
Return RTTOV radiance clear output array of size [nchannels] for given profile, requires store_rad true.

std::vector< double > getRadTotal (int profile)
Return RTTOV radiance total output array of size [nchannels] for given profile, requires store_rad true.

std::vector< double > getBtClear (int profile)
Return RTTOV radiance bt_clear output array of size [nchannels] for given profile, requires store_rad
true.

std::vector< double > getBt (int profile)
Return RTTOV radiance bt output array of size [nchannels] for given profile, requires store_rad true.

std::vector< double > getReflClear (int profile)
Return RTTOV radiance refl_clear output array of size [nchannels] for given profile, requires store_rad
true.

std::vector< double > getRefl (int profile)
Return RTTOV radiance refl output array of size [nchannels] for given profile, requires store_rad true.

std::vector< double > getRadCloudy (int profile)
Return RTTOV radiance cloudy output array of size [nchannels] for given profile, requires store_rad
true.

std::vector< double > getOvercast (int profile, int channel)
Return RTTOV radiance overcast output array of size [nlayers] for given profile and channel, requires
store_rad true.

std::vector< int > getRadQuality (int profile)
Return RTTOV radiance quality flag array of size [nchannels] for given profile, requires store_rad true.

bool getPlaneParallel ()
Return RTTOV radiance plane_parallel flag, requires store_rad true.

std::vector< double > getRad2UpClear (int profile)
Return RTTOV radiance2 upclear output array of size [nchannels] for given profile, requires store_rad2
true.

std::vector< double > getRad2DnClear (int profile)
Return RTTOV radiance2 dnclear output array of size [nchannels] for given profile, requires store_rad2
true.

std::vector< double > getRad2ReflDnClear (int profile)
Return RTTOV radiance2 refldnclear output array of size [nchannels] for given profile, requires
store_rad2 true.

std::vector< double > getRad2Up (int profile, int channel)
Return RTTOV radiance2 up output array of size [nlayers] for given profile and channel, requires
store_rad2 true.

std::vector< double > getRad2Down (int profile, int channel)

53

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Return RTTOV radiance2 down output array of size [nlayers] for given profile and channel, requires
store_rad2 true.

std::vector< double > getRad2Surf (int profile, int channel)
Return RTTOV radiance2 surf output array of size [nlayers] for given profile and channel, requires
store_rad2 true.

Python Rttov class
Methods:

Rttov ()
Rttov class constructor method.

loadInst (channels=None)
Load instrument for a list of channels if array of channel numbers is supplied or for all channels if
channels argument is omitted; the FileCoef member must have been set previously. Throws an exception
if an error is encountered.

updateOptions ()
Update RTTOV options for the currently loaded instrument. Throws an exception if an error is
encountered.

printOptions ()
Print RTTOV options for the currently loaded instrument. Throws an exception if an error is
encountered.

runDirect (channels=None)
Run the RTTOV direct model for the supplied list of channels or for all loaded channels if the channels
argument is omitted. Throws an exception if an error is encountered.

runK (channels=None)
Run the RTTOV K model for the supplied list of channels or for all loaded channels if the channels
argument is omitted. Throws an exception if an error is encountered.

float array getItemK (gas_id)
Return computed gas, cloud and aerosol Jacobian values. See Appendix A for the gas IDs. If the
requested Jacobian was not calculated this returns None, otherwise the result will be an array with
dimensions [nprofiles][nchannels][nlevels]. It is also possible to access each gas, cloud or aerosol
variable's Jacobians directly (see members below).

float array getUserAerNK (n)
Return computed Jacobian for user-defined aerosol species n (1<=n<=30). If the requested Jacobian
was not calculated this returns None, otherwise the result will be an array with dimensions [nprofiles]
[nchannels][nlevels].

float calcBpr (phangle, pha)
Calculate bpr parameter for given phase function pha defined on angles phangle.

float array calcLegcoef (phangle, pha, nmom, ngauss=0)

54

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Calculate Legendre coefficients for given phase function pha defined on angles phangle. Returns an
array of size (nmom+1). If ngauss >= nmom, then ngauss will determine the size of the Gaussian
quadrature used in the calculation.

Members:

Options Options
The Options instance associated with this Rttov object. You should set the options associated with this
instrument by assigning to the members of this Options instance.

Profiles Profiles
The Profiles instance associated with this Rttov object; you should declare an instance of Profiles,
populate it with profile data and assign it to this member.

string FileCoef
Set the coefficient filename.

string FileSccld
Set the cloud coefficient filename.

string FileScaer
Set the aerosol coefficient filename.

string FileMfasisCld
Set the MFASIS cloud LUT filename.

bool CoeffsLoaded
True if instrument is loaded (read-only).

int Nchannels
The number of loaded channels (read-only).

int CoeffsNlevels
The number of levels of the coefficient file (read-only).

float array SurfEmisRefl
Array containing input/output surface emissivity and reflectance values of dimensions [2][nprofiles]
[nchannels]; this is used to pass emissivity/reflectance values into RTTOV; if this is not specified before
calling RTTOV the Rttov object will create one with all elements set negative (i.e. with calcemis and
calcrefl set to true) which will contain the values used by RTTOV after it has been called.

float array AerAsb
The aerosol absorption coefs, scattering coefs and bpr parameters. Dimensions are [3][nprofiles]
[nchannels][nlayers].

float array AerPhangle
The aerosol phase function angles. Dimensions are [aer_nphangle].

float array AerPha
The aerosol phase functions. Dimensions are [nprofiles][nchannels][nlayers][aer_nphangle].

float array AerLegcoef
The aerosol phase function Legendre coefficients. Dimensions are [nprofiles][nchannels][nlayers]
[aer_nmom+1].

float array CldAsb

55

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

The cloud absorption coefs, scattering coefs and bpr parameters. Dimensions are [3][nprofiles]
[nchannels][nlayers].

float array CldPhangle
The cloud phase function angles. Dimensions are [cld_nphangle].

float array CldPha
The cloud phase functions. Dimensions are [nprofiles][nchannels][nlayers][cld_nphangle].

float array CldLegcoef
The cloud phase function Legendre coefficients. Dimensions are [nprofiles][nchannels][nlayers]
[cld_nmom+1].

float array BtRefl
Brightness temperatures/reflectances computed by the previous run, dimensions [nprofiles][nchannels].

float array Rads
Radiances computed by the previous run, dimensions [nprofiles][nchannels].

float array PK
Computed pressure Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array TK
Computed temperature Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array QK
Computed q Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array O3K
Computed o3 Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CO2K
Computed co2 Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array COK
Computed co Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array N2OK
Computed n2o Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CH4K
Computed ch4 Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SO2K
Computed so2 Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CLWK
Computed clw Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CfracK
Computed cfrac Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array StcoK
Computed stco (cloud type 1) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array StmaK
Computed stma (cloud type 2) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CuccK

56

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Computed cucc (cloud type 3) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CucpK
Computed cucp (cloud type 4) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CumaK
Computed cuma (cloud type 5) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CirrK
Computed cirr (cloud type 6) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array IcedeK
Computed icede Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array ClwdeK
Computed clwde Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array InsoK
Computed inso (aerosol type 1) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array WasoK
Computed waso (aerosol type 2) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SootK
Computed soot (aerosol type 3) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SsamK
Computed ssam (aerosol type 4) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SscmK
Computed sscm (aerosol type 5) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array MinmK
Computed minm (aerosol type 6) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array MiamK
Computed miam (aerosol type 7) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array MicmK
Computed micm (aerosol type 8) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array MitrK
Computed mitr (aerosol type 9) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SusoK
Computed suso (aerosol type 10) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array VolaK
Computed vola (aerosol type 11) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array VapoK
Computed vapo (aerosol type 12) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array AsduK
Computed asdu (aerosol type 13) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array BcarK
Computed bcar (aerosol type 1) Jacobians, dimensions [nprofiles][nchannels][nlevels].

57

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

float array Dus1K
Computed dus1 (aerosol type 2) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array Dus2K
Computed dus2 (aerosol type 3) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array Dus3K
Computed dus3 (aerosol type 4) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SulpK
Computed sulp (aerosol type 5) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array Ssa1K
Computed ssa1 (aerosol type 6) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array Ssa2K
Computed ssa2 (aerosol type 7) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array Ssa3K
Computed ssa3 (aerosol type 8) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array OmatK
Computed omat (aerosol type 9) Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array AerNK where N=1, 2, …, 30
Computed Jacobians for user-defined aerosol species N, dimensions [nprofiles][nchannels][nlevels].
You can also access these individually via the AerNK (N=1,2,...,30) members described below.

float array SkinK
Computed skin variable Jacobians, dimensions [nprofiles][nchannels][10].

float array S2mK
Computed 2m variable Jacobian, dimensions [nprofiles][nchannels][6].

float array SimpleCloudK
Computed simple cloud variable Jacobians, dimensions [nprofiles][nchannels][2].

float array SurfEmisK
Computed surface emissivity Jacobians, dimensions [nprofiles][nchannels].

float array SurfReflK
Computed surface reflectance Jacobians, dimensions [nprofiles][nchannels].

float array TauTotal
RTTOV transmission tau_total output array, dimensions [nprofiles][nchannels], requires store_trans
true.

float array TauLevels
RTTOV transmission tau_levels output array, dimensions [nprofiles][nchannels][nlevels], requires
store_trans true.

float array TauSunTotalPath1
RTTOV transmission tausun_total_path1 output array, dimensions [nprofiles][nchannels], requires
store_trans true.

float array TauSunLevelsPath1
RTTOV transmission tausun_levels_path1 output array dimensions [nprofiles][nchannels][nlevels],
requires store_trans true.

58

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

float array TauSunTotalPath2
RTTOV transmission tausun_total_path2 output array, dimensions [nprofiles][nchannels], requires
store_trans true.

float array TauSunLevelsPath2
RTTOV transmission tausun_levels_path2 output array dimensions [nprofiles][nchannels][nlevels],
requires store_trans true.

float array RadClear
RTTOV radiance clear output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array RadTotal
RTTOV radiance total output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array BtClear
RTTOV radiance bt_clear output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array Bt
RTTOV radiance bt output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array ReflClear
RTTOV radiance refl_clear output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array Refl
RTTOV radiance refl output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array RadCloudy
RTTOV radiance cloudy output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array Overcast
RTTOV radiance overcast output array, dimensions [nprofiles][nchannels][nlayers], requires store_rad
true.

int array RadQuality
RTTOV radiance quality flag array of size [nprofiles][nchannels], requires store_rad true.

bool PlaneParallel ()
RTTOV radiance plane_parallel flag, requires store_rad true.

float array Rad2UpClear
RTTOV radiance2 upclear output array, dimensions [nprofiles][nchannels], requires store_rad2 true.

float array Rad2DnClear
RTTOV radiance2 dnclear output array, dimensions [nprofiles][nchannels], requires store_rad2 true.

float array Rad2ReflDnClear
RTTOV radiance2 refldnclear output array, dimensions [nprofiles][nchannels], requires store_rad2 true.

float array Rad2Up
RTTOV radiance2 up output array, dimensions [nprofiles][nchannels][nlayers], requires store_rad2
true.

float array Rad2Down
RTTOV radiance2 down output array, dimensions [nprofiles][nchannels][nlayers], requires store_rad2
true.

float array Rad2Surf
RTTOV radiance2 surf output array, dimensions [nprofiles][nchannels][nlayers], requires store_rad2

59

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

true.

60

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Appendix D: RttovScattSafe and RttovScatt classes (C++ and
Python)

C++ RttovScattSafe and RttovScatt classes

The majority of the methods used for calling RTTOV are the same for both the RttovScattSafe and
RttovScatt classes. The only one which differs is the method for associating profile data with the
RttovScattSafe or RttovScatt instance.

Constructors:

RttovScattSafe ()
RttovScattSafe class constructor method.

RttovScatt ()
RttovScatt class constructor method.

Associating profile data with an RttovScattSafe object:

void setTheProfiles (std::vector< rttov::ProfileScatt > &theProfiles)
Associate a vector of ProfileScatt objects with this RttovScattSafe object; carries out checks on profiles
before calling RTTOV to help prevent errors: all profiles must be have the same number of levels with
the same content (gases, hydrometeors) and have the same gas_units.

Associating profile data with an RttovScatt object:

void setProfiles (rttov::ProfilesScatt *profiles)
Associate a ProfilesScatt object with this RttovScatt object; this is fast, but does not carry out any
checks on profiles before calling RTTOV.

Methods common to RttovScattSafe and RttovScatt classes:

const string & getFileCoef () const
Return the coefficient filename.

const string & getFileMietable () const
Return the Mietable filename.

void setFileCoef (const string &fileCoef)
Set the coefficient filename.

void setFileMietable (const string &fileMietable)
Set the Mietable filename.

void loadInst ()
Load instrument with all channels the methods setFileCoef() and setFileMietable() must have been
called previously.

int getInstId () const
Return the inst_id.

bool isCoeffsLoaded () const

61

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Return true if instrument is loaded.

int getNchannels () const
Return the number of loaded channels.

int getCoeffsNlevels ()
Return the number of levels of the coefficient file.

double * getWaveNumbers ()
Return the channel central wavenumbers of the coefficient file.

bool isProfileSet () const
Return true if profiles have been associated.

int getNprofiles () const
Return the number of associated profiles.

void updateOptions ()
Update RTTOV options for the currently loaded instrument.

void printOptions ()
Print RTTOV options for the currently loaded instrument.

void setSurfEmis (double *surfemis)
Set pointer to array containing input/output surface emissivity values; this must be previously allocated a
double array of dimensions [nprofiles][nchannels]; this is used to pass emissivity values into RTTOV-
SCATT; if this is not called the RttovScatt object will allocate an array containing the values used by
RTTOV-SCATT which can be accessed by getSurfEmis.

void printGases ()
Print gases array contents on standard output.

void runDirect ()
Run the RTTOV-SCATT direct model for all channels.

void runDirect (const vector< int > &channels)
Run the RTTOV-SCATT direct model for a list of channels.

void runK ()
Run the RTTOV-SCATT K model for all channels.

void runK (const vector< int > &channels)
Run the RTTOV-SCATT K model for a list of channels.

const double * getBt () const
Return a pointer to an array of dimensions [nprofiles][nchannels] filled with computed brightness
temperatures by the previous run; this array is allocated by the RttovScatt object and is destroyed when
a new run is performed or if the instance is destroyed.

std::vector< double > getBt (const int profile)
Return vector of brightness temperatures computed by the previous run for the given profile number.

const double * getSurfEmis () const
Return a pointer to an array of dimensions [nprofiles][nchannels] containing output values of surface
emissivity; this array can be initialised by the user and set by calling the setSurfEmis method;
alternatively if the emissivity array is allocated by the RttovScatt object it is deleted at the next run or
when the RttovScatt instance is destroyed.

std::vector< double > getPK (int profile, int channel)
Return the computed pressure Jacobians for a given profile and channel.

62

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

std::vector< double > getPhK (int profile, int channel)
Return the computed pressure half-level Jacobians for a given profile and channel.

std::vector< double > getTK (int profile, int channel)
Return computed temperature Jacobians for a given profile and channel.

std::vector< double > getUserCfracK (int profile)
Return vector of user cloud fraction Jacobians for a given profile.

std::vector< double > getSkinK (int profile, int channel)
Return computed skin variable Jacobians for a given profile and channel.

std::vector< double > getS2mK (int profile, int channel)
Return computed 2m variable Jacobian for a given profile and channel.

std::vector< double > getItemK (rttov::itemIdType, int profile, int channel)
Return computed gas and hydrometeor Jacobian values for a given profile and channel.

std::vector< double > getSurfEmisK (int profile)
Return computed surface emissivity Jacobians for a given profile.

std::vector< double > getBtClear (int profile)
Return RTTOV radiance bt_clear output array of size [nchannels] for given profile, requires store_rad
true.

std::vector< int > getRadQuality (int profile)
Return RTTOV radiance quality flag array of size [nchannels] for given profile, requires store_rad true.

std::vector< double > getEmisTermsCfrac (int profile)
Return RTTOV-SCATT emis retrieval cfrac output array of size [nchannels] for given profile, requires
store_emis_terms true.

std::vector< double > getEmisTermsBsfc (int profile)
Return RTTOV-SCATT emis retrieval bsfc output array of size [nchannels] for given profile, requires
store_emis_terms true.

std::vector< double > getEmisTermsTauCld (int profile)
Return RTTOV-SCATT emis retrieval tau_cld output array of size [nchannels] for given profile, requires
store_emis_terms true.

std::vector< double > getEmisTermsUpCld (int profile)
Return RTTOV-SCATT emis retrieval up_cld output array of size [nchannels] for given profile, requires
store_emis_terms true.

std::vector< double > getEmisTermsDownCld (int profile)
Return RTTOV-SCATT emis retrieval down_cld output array of size [nchannels] for given profile,
requires store_emis_terms true.

std::vector< double > getEmisTermsTauClr (int profile)
Return RTTOV-SCATT emis retrieval tau_clr output array of size [nchannels] for given profile, requires
store_emis_terms true.

std::vector< double > getEmisTermsUpClr (int profile)
Return RTTOV-SCATT emis retrieval up_clr output array of size [nchannels] for given profile, requires
store_emis_terms true.

std::vector< double > getEmisTermsDownClr (int profile)
Return RTTOV-SCATT emis retrieval down_clr output array of size [nchannels] for given profile,
requires store_emis_terms true.

63

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Python RttovScatt class
Methods:

RttovScatt ()
RttovScatt class constructor method.

loadInst ()
Load instrument: all channels must be loaded for RTTOV-SCATT; the FileCoef and FileMietable
members must have been set previously. Throws an exception if an error is encountered.

updateOptions ()
Update RTTOV options for the currently loaded instrument. Throws an exception if an error is
encountered.

runDirect (channels=None)
Run the RTTOV-SCATT direct model for the supplied list of channels or for all loaded channels if the
channels argument is omitted. Throws an exception if an error is encountered.

runK (channels=None)
Run the RTTOV-SCATT K model for the supplied list of channels or for all loaded channels if the
channels argument is omitted. Throws an exception if an error is encountered.

getItemK (gas_id)
Return computed gas, cloud and aerosol Jacobian values. See Appendix A for the gas IDs. If the
requested Jacobian was not calculated this returns None, otherwise the result will be an array with
dimensions [nprofiles][nchannels][nlevels]. It is also possible to access each gas, cloud or aerosol
variable's Jacobians directly (see members below).

Members:

Options Options
The Options instance associated with this RttovScatt object. You should set the RTTOV-SCATT options
associated with this instrument by assigning to the members of this Options instance.

ProfilesScatt Profiles
The ProfilesScatt instance associated with this RttovScatt object; you should declare an instance of
ProfilesScatt, populate it with profile data and assign it to this member.

string FileCoef
The coefficient filename.

string FileMietable
The Mietable filename.

bool CoeffsLoaded
True if instrument is loaded (read-only).

int Nchannels
The number of loaded channels (read-only).

int CoeffsNlevels
The number of levels of the coefficient file (read-only).

float array SurfEmis

64

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Array containing input/output surface emissivity values of dimensions [nprofiles][nchannels]; this is
used to pass emissivity values into RTTOV-SCATT; if this is not specified before calling RTTOV-SCATT
the RttovScatt object will create one with all elements set negative (i.e. with calcemis set to true) which
will contain the values used by RTTOV-SCATT after it has been called.

float array Bt
Brightness temperatures computed by the previous run, dimensions [nprofiles][nchannels].

float array PK
Computed pressure Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array PhK
Computed pressure helf-level Jacobians, dimensions [nprofiles][nchannels][nlevels+1].

float array TK
Computed temperature Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array QK
Computed q Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array UserCfracK
Computed user cfrac Jacobians, dimensions [nprofiles][nchannels].

float array CcK
Computed cloud cover Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array ClwK
Computed cloud liquid water Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array CiwK
Computed cloud ice water Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array RainK
Computed rain Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SpK
Computed sp Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array TotaliceK
Computed totalice Jacobians, dimensions [nprofiles][nchannels][nlevels].

float array SkinK
Computed skin variable Jacobians, dimensions [nprofiles][nchannels][8].

float array S2mK
Computed 2m variable Jacobian, dimensions [nprofiles][nchannels][5].

float array SurfEmisK
Computed surface emissivity Jacobians, dimensions [nprofiles][nchannels].

float array BtClear
RTTOV radiance bt_clear output array, dimensions [nprofiles][nchannels], requires store_rad true.

int array RadQuality
RTTOV radiance quality output array, dimensions [nprofiles][nchannels], requires store_rad true.

float array EmisTermsCfrac
RTTOV-SCATT emis retrieval cfrac output array, dimensions [nprofiles][nchannels], requires

65

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

store_emis_terms true.

float array EmisTermsBsfc
RTTOV-SCATT emis retrieval bsfc output array, dimensions [nprofiles][nchannels], requires
store_emis_terms true.

float array EmisTermsTauCld
RTTOV-SCATT emis retrieval tau_cld output array, dimensions [nprofiles][nchannels], requires
store_emis_terms true.

float array EmisTermsUpCld
RTTOV-SCATT emis retrieval up_cld output array, dimensions [nprofiles][nchannels], requires
store_emis_terms true.

float array EmisTermsDownCld
RTTOV-SCATT emis retrieval down_cld output array, dimensions [nprofiles][nchannels], requires
store_emis_terms true.

float array EmisTermsTauClr
RTTOV-SCATT emis retrieval tau_clr output array, dimensions [nprofiles][nchannels], requires
store_emis_terms true.

float array EmisTermsUpClr
RTTOV-SCATT emis retrieval up_clr output array, dimensions [nprofiles][nchannels], requires
store_emis_terms true.

float array EmisTermsDownClr
RTTOV-SCATT emis retrieval down_clr output array, dimensions [nprofiles][nchannels], requires
store_emis_terms true.

66

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Appendix E: Profile class (used with RttovSafe objects; C++
only)
Typically a vector of instances of this class is created, the profile data are assigned to each instance
and then the vector is associated with one or more RttovSafe instances.

Profile (int nlevels)
Constructor method.

void setGasUnits (rttov::gasUnitType gasUnits)
Set the gas_units.

void setMmrCldAer (const bool mmrCldAer)
Set the mmr_cldaer flag.

void setP (const std::vector< double > &p)
Set the p (pressure) vector.

void setT (const std::vector< double > &t)
Set the temperatures vector.

void setQ (const std::vector< double > &q)
Set item q for the profile (vector size must equal nlevels)

void setO3 (const std::vector< double > &o3)
Set item o3 for the profile (vector size must equal nlevels)

void setCO2 (const std::vector< double > &co2)
Set item co2 for the profile (vector size must equal nlevels)

void setN2O (const std::vector< double > &n2o)
Set item n2o for the profile (vector size must equal nlevels)

void setCO (const std::vector< double > &co)
Set item co for the profile (vector size must equal nlevels)

void setCH4 (const std::vector< double > &ch4)
Set item ch4 for the profile (vector size must equal nlevels)

void setSO2 (const std::vector< double > &so2)
Set item so2 for the profile (vector size must equal nlevels)

void setCLW (const std::vector< double > &clw)
Set item clw for the profile (vector size must equal nlevels)

void setCfrac (const std::vector< double > &cfrac)
Set item cfrac for the profile (vector size must equal nlevels)

void setStco (const std::vector< double > &stco)
Set item stco for the profile (vector size must equal nlevels)

void setStma (const std::vector< double > &stma)
Set item stma for the profile (vector size must equal nlevels)

void setCucc (const std::vector< double > &cucc)
Set item cucc for the profile (vector size must equal nlevels)

void setCucp (const std::vector< double > &cucp)

67

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Set item cucp for the profile (vector size must equal nlevels)

void setCuma (const std::vector< double > &cuma)
Set item cuma for the profile (vector size must equal nlevels)

void setCirr (const std::vector< double > &cirr)
Set item cirr for the profile (vector size must equal nlevels)

void setClwde (const std::vector< double > &clwde)
Set item clwde for the profile (vector size must equal nlevels)

void setIcede (const std::vector< double > &icede)
Set item icede for the profile (vector size must equal nlevels)

void setInso (const std::vector< double > &inso)
Set item inso for the profile (vector size must equal nlevels)

void setWaso (const std::vector< double > &waso)
Set item waso for the profile (vector size must equal nlevels)

void setSoot (const std::vector< double > &soot)
Set item soot for the profile (vector size must equal nlevels)

void setSsam (const std::vector< double > &ssam)
Set item ssam for the profile (vector size must equal nlevels)

void setSscm (const std::vector< double > &sscm)
Set item sscm for the profile (vector size must equal nlevels)

void setMinm (const std::vector< double > &minm)
Set item minm for the profile (vector size must equal nlevels)

void setMiam (const std::vector< double > &miam)
Set item miam for the profile (vector size must equal nlevels)

void setMicm (const std::vector< double > &micm)
Set item micm for the profile (vector size must equal nlevels)

void setMitr (const std::vector< double > &mitr)
Set item mitr for the profile (vector size must equal nlevels)

void setSuso (const std::vector< double > &suso)
Set item suso for the profile (vector size must equal nlevels)

void setVola (const std::vector< double > &vola)
Set item vola for the profile (vector size must equal nlevels)

void setVapo (const std::vector< double > &vapo)
Set item vapo for the profile (vector size must equal nlevels)

void setAsdu (const std::vector< double > &asdu)
Set item asdu for the profile (vector size must equal nlevels)

void setBcar (const std::vector< double > &bcar)
Set item bcar for the profile (vector size must equal nlevels)

void setDus1 (const std::vector< double > &dus1)
Set item dus1 for the profile (vector size must equal nlevels)

void setDus2 (const std::vector< double > &dus2)
Set item dus2 for the profile (vector size must equal nlevels)

68

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

void setDus3 (const std::vector< double > &dus3)
Set item dus3 for the profile (vector size must equal nlevels)

void setSulp (const std::vector< double > &sulp)
Set item sulp for the profile (vector size must equal nlevels)

void setSsa1 (const std::vector< double > &ssa1)
Set item ssa1 for the profile (vector size must equal nlevels)

void setSsa2 (const std::vector< double > &ssa2)
Set item ssa2 for the profile (vector size must equal nlevels)

void setSsa3 (const std::vector< double > &ssa3)
Set item ssa3 for the profile (vector size must equal nlevels)

void setOmat (const std::vector< double > &omat)
Set item omat for the profile (vector size must equal nlevels)

void setUserAerN (const std::vector< double > &aer, const int n)
Set profile aer of user-defined aerosol species n (1<=n<=30) for the profile (vector size must equal
nlevels)

void setAngles (const double satzen, const double satazi, const double sunzen, const double sunazi)
Set satellite an solar angles.

void setS2m (const double p_2m, const double t_2m, const double q_2m, const double u_10m, const double
v_10m, const double wind_fetch)
Set surface 2m and 10m parameters.

void setSkin (const double t, const double salinity, const double snow_fraction, const double foam_fraction,
const double fastem_coef_1, const double fastem_coef_2, const double fastem_coef_3, const double
fastem_coef_4, const double fastem_coef_5, const double specularity)
Set skin parameters.

void setSurfType (const int surftype, const int watertype)
Set surface type parameters.

void setSurfGeom (const double lat, const double lon, const double elevation)
Set surface geometry parameters.

void setDateTimes (const int yy, const int mm, const int dd, const int hh, const int mn, const int ss)
Set date and time.

void setSimpleCloud (const double ctp, const double cfraction)
Set simple cloud parameters.

void setClwScheme (const int clw_scheme)
Set clwscheme parameter.

void setIceCloud (const int ice_scheme, const int idg)
Set ice cloud parameters.

void setZeeman (const double Be, const double cosbk)
Set zeeman parameters.

69

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Appendix F: Profiles class (used with Rttov objects; C++ and
Python)

C++ Profiles class

Typically an instance of this class is created, the profile data are assigned to it and then it is
associated with one or more Rttov instances.

Profiles (int nbprofiles, const int nblevels)
Constructor method for individual gas specification.

void setGasUnits (int gasUnits)
Set the gas_units.

void setMmrCldAer (bool mmrcldaer)
Set the mmr_cldaer flag.

void setP (double *p)
Set the pointer to the p array of size [nprofiles][nlevels].

void setT (double *t)
Set the pointer to the t array of size [nprofiles][nlevels].

void setQ (double *q)
Set the pointer to the q array of size [nprofiles][nlevels].

void setO3 (double *o3)
Set the pointer to the o3 array of size [nprofiles][nlevels].

void setCO2 (double *co2)
Set the pointer to the co2 array of size [nprofiles][nlevels].

void setCO (double *co)
Set the pointer to the co array of size [nprofiles][nlevels].

void setN2O (double *n2o)
Set the pointer to the n2o array of size [nprofiles][nlevels].

void setCH4 (double *ch4)
Set the pointer to the ch4 array of size [nprofiles][nlevels].

void setSO2 (double *so2)
Set the pointer to the so2 array of size [nprofiles][nlevels].

void setCLW (double *clw)
Set the pointer to the clw array of size [nprofiles][nlevels].

void setAngles (double *angles)
Set the pointer to the angles array of size [nprofiles][4] containing satzen, satazi, sunzen, sunazi for
each profile.

void setS2m (double *s2m)
Set the pointer to the s2m array of size [nprofiles][6] containing 2m p, 2m t, 2m q, 10m wind u, v, wind
fetch for each profile.

void setSkin (double *skin)

70

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Set the pointer to the skin array of size [nprofiles][10] containing skin T, salinity, snow_fraction,
foam_fraction, fastem_coefs(1:5), specularity for each profile.

void setSurfType (int *surftype)
Set the pointer to the surftype array of size [nprofiles][2] containing surftype, watertype for each profile.

void setSurfGeom (double *surfgeom)
Set the pointer to the surfgeom array of size [nprofiles][3] containing latitude, longitude, elevation for
each profile.

void setDateTimes (int *datetimes)
Set the pointer to the datetimes array of size [nprofiles][6] containing yy, mm, dd, hh, mm, ss for each
profile.

void setSimpleCloud (double *simplecloud)
Set the pointer to the simplecloud array of size [nprofiles][2] containing ctp, cfraction for each profile.

void setClwScheme (int *clwscheme)
Set the pointer to the clwscheme array of size [nprofiles] containing clw_scheme for each profile.

void setIceCloud (int *icecloud)
Set the pointer to the icecloud array of size [nprofiles][2] containing ice_scheme, idg for each profile.

void setZeeman (double *zeeman)
Set the pointer to the zeeman array of size [nprofiles][2] containing be, cosbk for each profile.

void setGasItem (double *gasItem, rttov::itemIdType item_id)
Set a gas, cloud or aerosol profile variable; item likes clouds, cfrac or aerosols must have the same
dimensions as temperature or water vapour [nprofiles][nlevels].

Python Profiles class

Typically an instance of this class is created, the profile data are assigned to it and then it is
associated with one or more Rttov instances.

Methods:

Profiles (nprofiles, nlevels)
Constructor method.

setUserAerN (aer, n)
Set profile aer of size [nprofiles][nlevels] of user-defined aerosol species n (1<=n<=30). You can also
access these individually via the AerN (N=1,2,...,30) members described below.

delUserAerN (n)
Delete profile data for user-defined aerosol species n (1<=n<=30).

Members:
int GasUnits

The gas_units.

int MmrCldAer
The mmr_cldaer flag.

float array P

71

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

The p array of size [nprofiles][nlevels].

float array T
The t array of size [nprofiles][nlevels].

float array Q
The q array of size [nprofiles][nlevels].

float array O3
The o3 array of size [nprofiles][nlevels].

float array CO2
The co2 array of size [nprofiles][nlevels].

float array CO
The co array of size [nprofiles][nlevels].

float array N2O
The n2o array of size [nprofiles][nlevels].

float array CH4
The ch4 array of size [nprofiles][nlevels].

float array SO2
The so2 array of size [nprofiles][nlevels].

float array CLW
The clw array of size [nprofiles][nlevels].

float array Angles
The angles array of size [nprofiles][4] containing satzen, satazi, sunzen, sunazi for each profile.

float array S2m
The s2m array of size [nprofiles][6] containing 2m p, 2m t, 2m q, 10m wind u, v, wind fetch for each
profile.

float array Skin
The skin array of size [nprofiles][10] containing skin T, salinity, snow_fraction, foam_fraction,
fastem_coefs(1:5), specularity for each profile.

int array SurfType
The surftype array of size [nprofiles][2] containing surftype, watertype for each profile.

float array SurfGeom
The surfgeom array of size [nprofiles][3] containing latitude, longitude, elevation for each profile.

int array DateTimes
The datetimes array of size [nprofiles][6] containing yy, mm, dd, hh, mm, ss for each profile.

float array SimpleCloud
The simplecloud array of size [nprofiles][2] containing ctp, cfraction for each profile.

int array IceCloud
The icecloud array of size [nprofiles][2] containing ice scheme, idg for each profile.

int array ClwScheme
The clwscheme array of size [nprofiles] containing clw scheme for each profile.

float array Zeeman

72

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

The zeeman array of size [nprofiles][2] containing be, cosbk for each profile.

float array Cfrac
The cfrac array of size [nprofiles][nlevels].

float array Stco
The stco (cloud type 1) array of size [nprofiles][nlevels].

float array Stma
The stma (cloud type 2) array of size [nprofiles][nlevels].

float array Cucc
The cucc (cloud type 3) array of size [nprofiles][nlevels].

float array Cucp
The cucp (cloud type 4) array of size [nprofiles][nlevels].

float array Cuma
The cuma (cloud type 5) array of size [nprofiles][nlevels].

float array Cirr
The cirr (cloud type 6) array of size [nprofiles][nlevels].

float array Icede
The icede array of size [nprofiles][nlevels].

float array Clwde
The clwde array of size [nprofiles][nlevels].

float array Inso
The inso (aerosol type 1) array of size [nprofiles][nlevels].

float array Waso
The waso (aerosol type 2) array of size [nprofiles][nlevels].

float array Soot
The soot (aerosol type 3) array of size [nprofiles][nlevels].

float array Ssam
The ssam (aerosol type 4) array of size [nprofiles][nlevels].

float array Sscm
The sscm (aerosol type 5) array of size [nprofiles][nlevels].

float array Minm
The minm (aerosol type 6) array of size [nprofiles][nlevels].

float array Miam
The miam (aerosol type 7) array of size [nprofiles][nlevels].

float array Micm
The micm (aerosol type 8) array of size [nprofiles][nlevels].

float array Mitr
The mitr (aerosol type 9) array of size [nprofiles][nlevels].

float array Suso
The suso (aerosol type 10) array of size [nprofiles][nlevels].

73

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

float array Vola
The vola (aerosol type 11) array of size [nprofiles][nlevels].

float array Vapo
The vapo (aerosol type 12) array of size [nprofiles][nlevels].

float array Asdu
The asdu (aerosol type 13) array of size [nprofiles][nlevels].

float array Bcar
The bcar (aerosol type 1) array of size [nprofiles][nlevels].

float array Dus1
The dus1 (aerosol type 2) array of size [nprofiles][nlevels].

float array Dus2
The dus2 (aerosol type 3) array of size [nprofiles][nlevels].

float array Dus3
The dus3 (aerosol type 4) array of size [nprofiles][nlevels].

float array Sulp
The sulp (aerosol type 5) array of size [nprofiles][nlevels].

float array Ssa1
The ssa1 (aerosol type 6) array of size [nprofiles][nlevels].

float array Ssa2
The ssa2 (aerosol type 7) array of size [nprofiles][nlevels].

float array Ssa3
The ssa3 (aerosol type 8) array of size [nprofiles][nlevels].

float array Omat
The omat (aerosol type 9) array of size [nprofiles][nlevels].

float array AerN where N=1, 2, …, 30
The user-defined aerosol species N array of size [nprofiles][nlevels].

74

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Appendix G: ProfileScatt class (used with RttovScattSafe
objects; C++ only)
Typically a vector of instances of this class is created, the profile data are assigned to each instance
and then the vector is associated with one or more RttovScattSafe instances.

ProfileScatt (int nlevels)
Constructor method.

void setGasUnits (rttov::gasUnitType gasUnits)
Set the gas_units.

void setMmrSnowRain (const bool mmrSnowRain)
Set the mmr_snowrain flag.

void setUseTotalice (const bool useTotalice)
Set the use_totalice flag.

void setP (const std::vector< double > &p)
Set the p (pressure) vector.

void setPh (const std::vector< double > &ph)
Set the ph (pressure half-levels) vector.

void setT (const std::vector< double > &t)
Set the temperatures vector.

void setQ (const std::vector< double > &q)
Set item q for the profile (vector size must equal nlevels)

void setCc (const std::vector< double > &cc)
Set item cc for the profile (vector size must equal nlevels)

void setClw (const std::vector< double > &clw)
Set item clw for the profile (vector size must equal nlevels)

void setCiw (const std::vector< double > &ciw)
Set item ciw for the profile (vector size must equal nlevels)

void setSp (const std::vector< double > &sp)
Set item sp for the profile (vector size must equal nlevels)

void setRain (const std::vector< double > &rain)
Set item rain for the profile (vector size must equal nlevels)

void setTotalice (const std::vector< double > &totalice)
Set item totalice for the profile (vector size must equal nlevels)

void setUserCfrac (const double usercfrac_in)
Set user cfrac for the profile.

void setAngles (const double satzen, const double satazi)
Set satellite angles.

void setS2m (const double p_2m, const double t_2m, const double q_2m, const double u_10m, const double
v_10m)
Set surface 2m and 10m parameters.

75

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

void setSkin (const double t, const double salinity, const double foam_fraction, const double fastem_coef_1,
const double fastem_coef_2, const double fastem_coef_3, const double fastem_coef_4, const double
fastem_coef_5)
Set skin parameters.

void setSurfType (const int surftype_in)
Set surface type.

void setSurfGeom (const double lat, const double lon, const double elevation)
Set surface geometry parameters.

void setDateTimes (const int yy, const int mm, const int dd, const int hh, const int mn, const int ss)
Set date and time.

void setZeeman (const double Be, const double cosbk)
Set zeeman parameters.

76

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Appendix H: ProfilesScatt class (used with RttovScatt objects;
C++ and Python)

C++ ProfilesScatt class

Typically an instance of this class is created, the profile data are assigned to it and then it is
associated with one or more RttovScatt instances.

ProfilesScatt (int nbprofiles, const int nblevels)
Constructor method for individual gas specification.

void setGasUnits (int gasUnits)
Set the gas_units.

void setMmrSnowRain (bool mmrSnowRain)
Set the mmr_snowrain flag.

void setUseTotalice (bool useTotalice)
Set the use_totalice flag.

void setP (double *p)
Set the pointer to the p array of size [nprofiles][nlevels].

void setPh (double *ph)
Set the pointer to the ph array of size [nprofiles][nlevels+1].

void setT (double *t)
Set the pointer to the t array of size [nprofiles][nlevels].

void setQ (double *q)
Set the pointer to the q array of size [nprofiles][nlevels].

void setCc (double *cc)
Set the pointer to the cc array of size [nprofiles][nlevels].

void setClw (double *clw)
Set the pointer to the clw array of size [nprofiles][nlevels].

void setCiw (double *ciw)
Set the pointer to the ciw array of size [nprofiles][nlevels].

void setSp (double *sp)
Set the pointer to the sp array of size [nprofiles][nlevels].

void setRain (double *rain)
Set the pointer to the rain array of size [nprofiles][nlevels].

void setTotalice (double *totalice)
Set the pointer to the totalice array of size [nprofiles][nlevels].

void setUserCfrac (double *usercfrac)
Set the pointer to the user cfrac array of size [nprofiles].

void setAngles (double *angles)
Set the pointer to the angles array of size [nprofiles][2] containing satzen, satazi for each profile.

void setS2m (double *s2m)

77

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Set the pointer to the s2m array of size [nprofiles][5] containing 2m p, 2m t, 2m q, 10m wind u, v for
each profile.

void setSkin (double *skin)
Set the pointer to the skin array of size [nprofiles][8] containing skin T, salinity, foam_fraction,
fastem_coefs(1:5) for each profile.

void setSurfType (int *surftype)
Set the pointer to the surftype array of size [nprofiles] containing surftype for each profile.

void setSurfGeom (double *surfgeom)
Set the pointer to the surfgeom array of size [nprofiles][3] containing latitude, longitude, elevation for
each profile.

void setDateTimes (int *datetimes)
Set the pointer to the datetimes array of size [nprofiles][6] containing yy, mm, dd, hh, mm, ss for each
profile.

void setZeeman (double *zeeman)
Set the pointer to the zeeman array of size [nprofiles][2] containing be, cosbk for each profile.

void setGasItem (double *gasItem, rttov::itemIdType item_id)
Set a gas or hydrometeor profile variable must have the same dimensions as temperature or water
vapour [nprofiles][nlevels].

Python ProfilesScatt class

Typically an instance of this class is created, the profile data are assigned to it and then it is
associated with one or more RttovScatt instances.

Methods:

ProfilesScatt (nprofiles, nlevels)
Constructor method.

Members:

GasUnits
The gas_units.

MmrSnowRain
The mmr_snowrain flag.

UseTotalice
The use_totalice flag.

float array P
The p array of size [nprofiles][nlevels].

float array Ph
The ph array of size [nprofiles][nlevels+1].

float array T
The t array of size [nprofiles][nlevels].

78

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

float array Q (double *q)
The q array of size [nprofiles][nlevels].

float array Cc (double *cc)
The cc array of size [nprofiles][nlevels].

float array Clw (double *clw)
The clw array of size [nprofiles][nlevels].

float array Ciw (double *ciw)
The ciw array of size [nprofiles][nlevels].

float array Sp (double *sp)
The sp array of size [nprofiles][nlevels].

float array Rain (double *rain)
The rain array of size [nprofiles][nlevels].

float array Totalice (double *totalice)
The totalice array of size [nprofiles][nlevels].

float array UserCfrac (double *usercfrac)
The user cfrac array of size [nprofiles].

float array Angles (double *angles)
The angles array of size [nprofiles][2] containing satzen, satazi for each profile.

float array S2m (double *s2m)
The s2m array of size [nprofiles][5] containing 2m p, 2m t, 2m q, 10m wind u, v for each profile.

float array Skin (double *skin)
The skin array of size [nprofiles][8] containing skin T, salinity, foam_fraction, fastem_coefs(1:5) for
each profile.

float array SurfType (int *surftype)
The surftype array of size [nprofiles] containing surftype for each profile.

float array SurfGeom (double *surfgeom)
The surfgeom array of size [nprofiles][3] containing latitude, longitude, elevation for each profile.

float array DateTimes (int *datetimes)
The datetimes array of size [nprofiles][6] containing yy, mm, dd, hh, mm, ss for each profile.

float array Zeeman (double *zeeman)
The zeeman array of size [nprofiles][2] containing be, cosbk for each profile.

79

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Appendix I: Options class (C++ and Python)

C++ Options class

The methods listed below are used to set the RTTOV and wrapper options. Methods also exist to
query the options: see wrapper/Options.h. The Rttov/RttovSafe/RttovScatt/RttovScattSafe
objects have options members so there is usually no need to create instances of this class manually.
Note that some members access both the standard RTTOV and the RTTOV-SCATT-equivalent
options at the same time.

Options ()
Constructor method.

void setApplyRegLimits (bool applyRegLimts)
Set the opts%config%apply_reg_limits and opts_scatt%config%apply_reg_limits options.

void setDoCheckinput (bool doCheckinput)
Set the opts%config%do_checkinput and opts_scatt%config%do_checkinput options.

void setVerbose (bool verbose)
Set the opts%config%verbose and opts_scatt%config%verbose options.

void setFixHgpl (bool fixHgpl)
Set the opts%config%verbose and opts_scatt%config%verbose options.

void setAddInterp (bool addinterp)
Set the opts%interpolation%addinterp option.

void setInterpMode (int interpMode)
Set the opts%interpolation%interp_mode and opts_scatt%interp_mode options.

void setRegLimitExtrap (bool regLimitExtrap)
Set the opts%interpolation%reg_limit_extrap and opts_scatt%reg_limit_extrap options.

void setSpacetop (bool spacetop)
Set the opts%interpolation%spacetop option.

void setLgradp (bool lgradp)
Set the opts%interpolation%lgradp and opts_scatt%lgradp options.

void setDoLambertian (bool doLambertian)
Set the opts%rt_all%do_lambertian option.

void setLambertianFixedAngle (bool lambertianFixedAngle)
Set the opts%rt_all%lambertian_fixed_angle option.

void setUseQ2m (bool useQ2m)
Set the opts%rt_all%use_q2m and opts_scatt%use_q2m options.

void setSwitchrad (bool switchrad)
Set the opts%rt_all%switchrad option.

void setAddRefrac (bool addRefrac)
Set the opts%rt_all%addrefrac option.

void setPlaneParallel (bool planeParallel)
Set the opts%rt_all%plane_parallel option.

80

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

void setRadDownLinTau (bool radDownLinTau)
Set the opts%rt_all%rad_down_lin_tau and opts_scatt%rad_down_lin_tau options.

void setDtauTest (bool dtauTest)
Set the opts%rt_all%dtau_test and opts_scatt%dtau_test options.

void setCLWData (bool clwData)
Set the opts%rt_mw%clw_data option.

void setCLWScheme (int clwScheme)
Set the opts%rt_mw%clw_scheme option.

void setCLWCalcOnCoefLev (bool clwCalcOnCoefLev)
Set the opts%rt_mw%clw_calc_on_coef_lev option.

void setCLWCloudTop (double clwCloudTop)
Set the opts%rt_mw%clw_cloud_top option.

void setFastemVersion (int fastemVersion)
Set the opts%rt_mw%fastem_version and opts_scatt%fastem_version options.

void setSupplyFoamFraction (bool supplyFoamFraction)
Set the opts%rt_mw%supply_foam_fraction and opts_scatt%supply_foam_fraction options.

void setApplyBandCorrection (bool applyBandCorrection)
Set the opts%rt_mw%apply_band_correction and opts_scatt%apply_band_correction options.

void setOzoneData (bool ozoneData)
Set the opts%rt_ir%ozone_data option.

void setCO2Data (bool co2Data)
Set the opts%rt_ir%co2_data option.

void setCH4Data (bool ch4Data)
Set the opts%rt_ir%ch4_data option.

void setCOData (bool coData)
Set the opts%rt_ir%co_data option.

void setN2OData (bool n2oData)
Set the opts%rt_ir%n2o_data option.

void setSO2Data (bool so2Data)
Set the opts%rt_ir%so2_data option.

void setSolarSeaBrdfModel (int solarSeaBrdfModel)
Set the opts%rt_ir%solar_sea_brdf_model option.

void setIrSeaEmisModel (int irSeaEmisModel)
Set the opts%rt_ir%ir_sea_emis_model option.

void setAddSolar (bool addsolar)
Set the opts%rt_ir%addsolar option.

void setRayleighSingleScatt (bool rayleighSingleScatt)
Set the opts%rt_ir%rayleigh_single_scatt option.

void setDoNlteCorrection (bool doNlteCorrection)
Set the opts%rt_ir%do_nlte_correction option.

void setAddAerosl (bool addaerosl)
Set the opts%rt_ir%addaerosl option.

81

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

void setAddClouds (bool addclouds)
Set the opts%rt_ir%addclouds option.

void setUserAerOptParam (bool userAerOptParam)
Set the opts%rt_ir%user_aer_opt_param option.

void setUserCldOptParam (bool userCldOptParam)
Set the opts%rt_ir%user_cld_opt_param option.

void setGridBoxAvgCloud (bool gridBoxAvgCloud)
Set the opts%rt_ir%grid_box_avg_cloud option.

void setCldstrSimple (bool cldstrCimple)
Set the opts%rt_ir%cldstr_simple option.

void setCldstrLowCloudTop (double cldstrLowCloudTop)
Set the opts%rt_ir%cldstr_low_cloud_top option.

void setCldstrThreshold (double cldstrThreshold)
Set the opts%rt_ir%cldstr_threshold option.

void setIrScattModel (int irScattModel)
Set the opts%rt_ir%ir_scatt_model option.

void setVisScattModel (int visScattModel)
Set the opts%rt_ir%vis_scatt_model option.

void setDomNstreams (int domNstreams)
Set the opts%rt_ir%dom_nstreams option.

void setDomAccuracy (double domAccuracy)
Set the opts%rt_ir%dom_accuracy option.

void setDomOpdepThreshold (double domOpdepThreshold)
Set the opts%rt_ir%dom_opdep_threshold option.

void setLradiance (bool lradiance)
Set the opts_scatt%lradiance option.

void setLuserCfrac (bool lusercfrac)
Set the opts_scatt%lusercfrac option.

void setCCThreshold (double ccThreshold)
Set the opts_scatt%cc_threshold option.

void setHydroCfracTLAD (bool hydroCfracTLAD)
Set the opts_scatt%hydro_cfrac_tlad option.

void setZeroHydroTLAD (bool zeroHydroTLAD)
Set the opts_scatt%zero_hydro_tlad option.

void setNthreads (int nthreads)
Set the number of threads RTTOV will use (compile RTTOV with OpenMP to make use of this)

void setNprofsPerCall (int nprofsPerCall)
Set the number of profiles passed into rttov_direct or rttov_k per call.

void setVerboseWrapper (bool verboseWrapper)
Set the verbose_wrapper option.

void setCheckOpts (bool checkOpts)
Set the check_opts option.

82

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

void setStoreRad (bool storeRad)
Set the store_rad wrapper option.

void setStoreRad2 (bool storeRad2)
Set the store_rad2 wrapper option.

void setStoreTrans (bool storeTrans)
Set the store_trans wrapper option.

void setStoreEmisTerms (bool storeEmisTerms)
Set the store_emis_terms wrapper option.

bool isApplyRegLimits ()
Return the opts%config%apply_reg_limits and opts_scatt%config%apply_reg_limits options.

bool isDoCheckinput ()
Return the opts%config%do_checkinput and opts_scatt%config%do_checkinput options.

bool isVerbose ()
Return the opts%config%verbose and opts_scatt%config%verbose options.

bool isFixHgpl ()
Return the opts%config%fix_hgpl and opts_scatt%config%fix_hgpl options.

bool isAddInterp ()
Return the opts%interpolation%addinterp option.

int getInterpMode () const
Return the opts%interpolation%interp_mode and opts_scatt%interp_mode options.

bool isRegLimitExtrap ()
Return the opts%interpolation%reg_limit_extrap and opts_scatt%reg_limit_extrap options.

bool isSpacetop ()
Return the opts%interpolation%spacetop option.

bool isLgradp ()
Return the opts%interpolation%lgradp and opts_scatt%lgradp options.

bool isDoLambertian ()
Return the opts%rt_all%do_lambertian option.

bool isLambertianFixedAngle ()
Return the opts%rt_all%lambertian_fixed_angle option.

bool isUseQ2m ()
Return the opts%rt_all%use_q2m and opts_scatt%use_q2m options.

bool isSwitchrad ()
Return the opts%rt_all%switchrad option.

bool isAddRefrac ()
Return the opts%rt_all%addrefrac option.

bool isPlaneParallel ()
Return the opts%rt_all%plane_parallel option.

bool isRadDownLinTau ()
Return the opts%rt_all%rad_down_lin_tau and opts_scatt%rad_down_lin_tau options.

bool isDtauTest ()
Return the opts%rt_all%dtau_test and opts_scatt%dtau_test options.

83

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

bool isCLWData ()
Return the opts%rt_mw%clw_data option.

int getCLWScheme () const
Return the opts%rt_mw%clw_scheme option.

bool isCLWCalcOnCoefLev ()
Return the opts%rt_mw%clw_calc_on_coef_lev option.

double getCLWCloudTop () const
Return the opts%rt_mw%clw_cloud_top option.

int getFastemVersion () const
Return the opts%rt_mw%fastem_version and opts_scatt%fastem_version options.

bool isSupplyFoamFraction ()
Return the opts%rt_mw%supply_foam_fraction and opts_scatt%supply_foam_fraction options.

bool isApplyBandCorrection ()
Return the opts%rt_mw%apply_band_correction and opts_scatt%apply_band_correction options.

bool isOzoneData ()
Return the opts%rt_ir%ozone_data option.

bool isCO2Data ()
Return the opts%rt_ir%co2_data option.

bool isCH4Data ()
Return the opts%rt_ir%ch4_data option.

bool isCOData ()
Return the opts%rt_ir%co_data option.

bool isN2OData ()
Return the opts%rt_ir%n2o_data option.

bool isSO2Data ()
Return the opts%rt_ir%so2_data option.

int getSolarSeaBrdfModel () const
Return the opts%rt_ir%solar_sea_brdf_model option.

int getIrSeaEmisModel () const
Return the opts%rt_ir%ir_sea_emis_model option.

bool isAddSolar ()
Return the opts%rt_ir%addsolar option.

bool isRayleighSingleScatt ()
Return the opts%rt_ir%rayleigh_single_scatt option.

bool isDoNlteCorrection ()
Return the opts%rt_ir%do_nlte_correction option.

bool isAddAerosl ()
Return the opts%rt_ir%addaerosl option.

bool isAddClouds ()
Return the opts%rt_ir%addclouds option.

bool isCldstrSimple ()
Return the opts%rt_ir%cldstr_simple option.

84

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

double getCldstrLowCloudTop () const
Return the opts%rt_ir%cldstr_low_cloud_top option.

double getCldstrThreshold () const
Return the opts%rt_ir%cldstr_threshold option.

int getIrScattModel () const
Return the opts%rt_ir%ir_scatt_model option.

int getVisScattModel () const
Return the opts%rt_ir%vis_scatt_model option.

int getDomNstreams () const
Return the opts%rt_ir%dom_nstreams option.

double getDomAccuracy () const
Return the opts%rt_ir%dom_accuracy option.

double getDomOpdepThreshold () const
Return the opts%rt_ir%dom_opdep_threshold option.

bool isUserAerOptParam ()
Return the opts%rt_ir%user_aer_opt_param option.

bool isUserCldOptParam ()
Return the opts%rt_ir%user_cld_opt_param option.

bool isGridBoxAvgCloud ()
Return the opts%rt_ir%grid_box_avg_cloud option.

bool isAddPC ()
Return the opts%rt_ir%pc%addpc option.

bool isAddRadrec ()
Return the opts%rt_ir%pc%addradrec option.

int getIpcreg () const
Return the opts%rt_ir%pc%ipcreg option.

int getIpcbnd () const
Return the opts%rt_ir%pc%ipcbnd option.

bool isLradiance ()
Return the opts_scatt%lradiance option.

bool isLuserCfrac ()
Return the opts_scatt%lusercfrac option.

double getCCThreshold () const
Return the opts_scatt%cc_threshold option.

bool isHydroCfracTLAD ()
Return the opts_scatt%hydro_cfrac_tlad option.

bool isZeroHydroTLAD ()
Return the opts_scatt%zero_hydro_tlad option.

int getNthreads () const
Return the number of threads RTTOV will use (compile RTTOV with OpenMP to make use of this)

int getNprofsPerCall () const
Return the number of profiles passed into rttov_direct or rttov_k per call.

85

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

bool isVerboseWrapper () const
Return set the verbose_wrapper option.

bool isCheckOpts () const
Return set the check_opts option.

bool isStoreRad () const
Return the store_rad wrapper option.

bool isStoreRad2 () const
Return the store_rad2 wrapper option.

bool isStoreTrans () const
Return the store_trans wrapper option.

bool isStoreEmisTerms () const
Return the store_emis_terms wrapper option.

Python Options class

The members below correspond directly to the RTTOV and wrapper options and are referenced
directly. The Rttov/RttovScatt classes have an Options member so there is usually no need to
create instances of this class manually. Note that some members access both the standard RTTOV
and the RTTOV-SCATT-equivalent options at the same time.

Methods:

Options ()
Constructor method.

Members:
bool ApplyRegLimits

The opts%config%apply_reg_limits and opts_scatt%config%apply_reg_limits options.

bool DoCheckinput
The opts%config%do_checkinput and opts_scatt%config%do_checkinput options.

bool Verbose
The opts%config%verbose and opts_scatt%config%verbose options.

bool FixHgpl
The opts%config%fix_hgpl and opts_scatt%config%fix_hgpl options.

bool AddInterp
The opts%interpolation%addinterp option.

int InterpMode
The opts%interpolation%interp_mode and opts_scatt%interp_mode options.

bool RegLimitExtrap
The opts%interpolation%reg_limit_extrap and opts_scatt%reg_limit_extrap options.

bool Spacetop
The opts%interpolation%spacetop option.

86

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

bool Lgradp
The opts%interpolation%lgradp and opts_scatt%lgradp options.

bool DoLambertian
The opts%rt_all%do_lambertian option.

bool LambertianFixedAngle
The opts%rt_all%lambertian_fixed_angle option.

bool UseQ2m
The opts%rt_all%use_q2m and opts_scatt%use_q2m options.

bool Switchrad
The opts%rt_all%switchrad option.

bool AddRefrac
The opts%rt_all%addrefrac option.

bool PlaneParallel
The opts%rt_all%plane_parallel option.

bool RadDownLinTau
The opts%rt_all%rad_down_lin_tau and opts_scatt%rad_down_lin_tau options.

bool DtauTest
The opts%rt_all%dtau_test and opts_scatt%dtau_test options.

bool CLWData
The opts%rt_mw%clw_data option.

int CLWScheme
The opts%rt_mw%clw_scheme option.

bool CLWCalcOnCoefLev
The opts%rt_mw%clw_calc_on_coef_lev option.

float CLWCloudTop
The opts%rt_mw%clw_cloud_top option.

int FastemVersion
The opts%rt_mw%fastem_version and opts_scatt%fastem_version options.

bool SupplyFoamFraction
The opts%rt_mw%supply_foam_fraction and opts_scatt%supply_foam_fraction options.

bool ApplyBandCorrection
The opts%rt_mw%apply_band_correction and opts_scatt%apply_band_correction options.

bool OzoneData
The opts%rt_ir%ozone_data option.

bool CO2Data
The opts%rt_ir%co2_data option.

bool CH4Data
The opts%rt_ir%ch4_data option.

bool COData
The opts%rt_ir%co_data option.

bool N2OData
The opts%rt_ir%n2o_data option.

87

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

bool SO2Data
The opts%rt_ir%so2_data option.

int SolarSeaBrdfModel
The opts%rt_ir%solar_sea_brdf_model option.

int IrSeaEmisModel
The opts%rt_ir%ir_sea_emis_model option.

bool AddSolar
The opts%rt_ir%addsolar option.

bool RayleighSingleScatt
The opts%rt_ir%rayleigh_single_scatt option.

bool DoNlteCorrection
The opts%rt_ir%do_nlte_correction option.

bool AddAerosl
The opts%rt_ir%addaerosl option.

bool AddClouds
The opts%rt_ir%addclouds option.

bool CldstrSimple
The opts%rt_ir%cldstr_simple option.

float CldstrLowCloudTop
The opts%rt_ir%cldstr_low_cloud_top option.

float CldstrThreshold
The opts%rt_ir%cldstr_threshold option.

int IrScattModel
The opts%rt_ir%ir_scatt_model option.

int VisScattModel
The opts%rt_ir%vis_scatt_model option.

int DomNstreams
The opts%rt_ir%dom_nstreams option.

float DomAccuracy
The opts%rt_ir%dom_accuracy option.

float DomOpdepThreshold
The opts%rt_ir%dom_opdep_threshold option.

bool UserAerOptParam
The opts%rt_ir%user_aer_opt_param option.

bool UserCldOptParam
The opts%rt_ir%user_cld_opt_param option.

bool GridBoxAvgCloud
The opts%rt_ir%grid_box_avg_cloud option.

bool AddPC
The opts%rt_ir%pc%addpc option.

bool AddRadrec
The opts%rt_ir%pc%addradrec option.

88

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

int Ipcreg
The opts%rt_ir%pc%ipcreg option.

int Ipcbnd
The opts%rt_ir%pc%ipcbnd option.

bool Lradiance
The opts_scatt%lradiance option.

bool LuserCfrac
The opts_scatt%lusercfrac option.

float CCThreshold
The opts_scatt%cc_threshold option.

bool HydroCfracTLAD
The opts_scatt%hydro_cfrac_tlad option.

bool ZeroHydroTLAD
The opts_scatt%zero_hydro_tlad option.

int Nthreads
The number of threads RTTOV will use (compile RTTOV with OpenMP to make use of this)

int NprofsPerCall
The number of profiles passed into rttov_direct or rttov_k per call.

bool VerboseWrapper
Return set the verbose_wrapper option.

bool CheckOpts
Return set the check_opts option.

bool StoreRad
The store_rad wrapper option.

bool StoreRad2
The store_rad2 wrapper option.

bool StoreTrans
The store_trans wrapper option.

bool StoreEmisTerms
The store_emis_terms wrapper option.

89

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Appendix J: Atlas class (C++ and Python)

C++ Atlas class
Atlas ()

Atlas class constructor method.

Atlas (bool verbose)
Atlas class constructor method.

const string & getAtlasPath () const
Return the path for the atlas files.

void setAtlasPath (const string &atlasPath)
Set the path for the atlas files.

bool isAtlasLoaded () const
Return true if atlas has been loaded.

void setVerbose (bool verbose)
Set the verbose boolean.

void setIncLand (bool incLand)
Set the inc_land boolean.

void setIncSeaIce (bool incSeaIce)
Set the inc_seaice boolean.

void setIncSea (bool incSea)
Set the inc_sea boolean.

bool getIncLand () const
Return the inc_land boolean.

bool getIncSeaIce () const
Return the inc_seaice boolean.

bool getIncSea () const
Return the inc_sea boolean.

bool loadBrdfAtlas (int month, int atlas_id=-1)
Initialise the BRDF atlas for use with any instrument.

bool loadBrdfAtlas (int month, rttov::Rttov *rttov, int atlas_id=-1)
Initialise the BRDF atlas for a specific instrument.

bool loadBrdfAtlas (int month, rttov::RttovSafe *rttov, int atlas_id=-1)
Initialise the BRDF atlas for a specific instrument.

bool loadIrEmisAtlas (int month, bool ang_corr=false, int atlas_id=-1)
Initialise the IR emissivity atlas for use with any instrument.

bool loadIrEmisAtlas (int month, rttov::Rttov *rttov, bool ang_corr=false, int atlas_id=-1)
Initialise the IR emissivity atlas for a specific instrument.

bool loadIrEmisAtlas (int month, rttov::RttovSafe *rttov, bool ang_corr=false, int atlas_id=-1)
Initialise the IR emissivity atlas for a specific instrument.

bool loadMwEmisAtlas (int month, int atlas_id=-1)
Initialise the MW emissivity atlas for use with any instrument (TELSEM2)

90

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

bool loadMwEmisAtlas (int month, rttov::Rttov *rttov, int year=0, int atlas_id=-1)
Initialise the MW emissivity atlas for a specific instrument (CNRM MW atlas)

bool loadMwEmisAtlas (int month, rttov::RttovSafe *rttov, int year=0, int atlas_id=-1)
Initialise the MW emissivity atlas for a specific instrument (CNRM MW atlas)

bool loadMwEmisAtlas (int month, rttov::RttovScatt *rttov, int year=0, int atlas_id=-1)
Initialise the MW emissivity atlas for a specific instrument (CNRM MW atlas)

bool loadMwEmisAtlas (int month, rttov::RttovScattSafe *rttov, int year=0, int atlas_id=-1)
Initialise the MW emissivity atlas for a specific instrument (CNRM MW atlas)

void fillEmisBrdf (double *emisBrdf, rttov::Rttov *rttov, const vector< int > &channels=vector< int >{})
Return emissivities/BRDFs.

void fillEmisBrdf (double *emisBrdf, rttov::RttovSafe *rttov, const vector< int > &channels=vector< int
>{})
Return emissivities/BRDFs.

void fillEmisBrdf (double *emisBrdf, rttov::RttovScatt *rttov, const vector< int > &channels=vector< int
>{})
Return emissivities.

void fillEmisBrdf (double *emisBrdf, rttov::RttovScattSafe *rttov, const vector< int > &channels=vector<
int >{})
Return emissivities.

void dropAtlas ()
Deallocate memory for the atlas.

91

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Python Atlas class
Methods:

Atlas (verbose=True)
Constructor method.

bool loadBrdfAtlas(month, inst=None, atlas_id=-1)
Load BRDF atlas data for specified month. Returns True if successful, False otherwise. The inst
argument can be a loaded Rttov instance to initialise the BRDF atlas for a specific instrument (for faster
calls).

bool loadIrEmisAtlas(month, inst=None, ang_corr=False, atlas_id=-1)
Load IR emissivity atlas data for specified month. Returns True if successful, False otherwise. The inst
argument can be a loaded Rttov instance to initialise the BRDF atlas for a specific instrument (for faster
calls).

bool loadMwEmisAtlas(month, inst=None, atlas_id=-1)
Load MW emissivity atlas data for specified month. Returns True if successful, False otherwise. The inst
argument can be a loaded Rttov or RttovScatt instance: this is required for the CNRM atlas, but is
ignored by TELSEM2.

float array getEmisBrdf(inst, channels=None)
Return array of emissivity/BRDF values of dimensions [nprofiles][nchannels]. The inst argument is a
loaded Rttov or RttovScatt instance which has profile data associated with it. Values are returned for the
supplied channel list or otherwise for all loaded channels for the instrument. Throws an execption if an
error is encountered.

dropAtlas ()
Deallocate atlas data.

Members:
string AtlasPath

Path to the atlas data to be loaded: must be set before calling one of the “load” methods.

bool IncLand
If True emissivity/BRDF values are returned for profiles with land surface type; otherwise negative
values are returned for such profiles. Default: True.

bool IncSea
If True emissivity/BRDF values are returned for profiles with sea surface type; otherwise negative values
are returned for such profiles. Default: True.

bool IncSeaIce
If True emissivity/BRDF values are returned for profiles with sea-ice surface type; otherwise negative
values are returned for such profiles. Default: True.

bool Verbose
Verbosity flag.

92

Python/C/C++ wrapper
for RTTOV v12

Doc ID : NWPSAF-MO-UD-038
Version : 1.3
Date : 2019 02 05

Appendix K: Enumeration types (C++)
The enumerations are defined in wrapper/rttov_common.h.

The following table lists the constants of the enumeration rttov::gasUnitType used to specify the
profile gas_units variable in the setGasUnits method of the Profile and ProfileScatt classes.

Enumeration constants Description

unknown Default initialisation, ppmv over moist air will be used

ppmv_dry Gas units of ppmv over dry air

kg_per_kg Gas units of kg/kg over moist air

ppmv_wet Gas units of ppmv over moist air

The following table lists the constants of the enumeration rttov::itemIdType used for setting gas,
cloud and aerosol profiles in the setGasItem method of the Profiles and ProfilesScatt classes and
to obtain the Jacobians for gases, aerosol and cloud profiles using the getItemK method of the
Rttov, RttovSafe, RttovScatt and RttovScattSafe classes after running the RTTOV K model.

Enumeration constants Description

Q, O3, CO2, N2O, CO, CH4, SO2 RTTOV variable gases

CLW Cloud liquid water (for non-scattering MW simulations)

CFRAC Cloud fraction for visible/IR cloud scattering simulations

STCO, STMA, CUCC, CUCP, CUMA The 5 cloud liquid water particle types for visible/IR cloud scattering
simulations.

CIRR The ice cloud particle type for visible/IR cloud scattering simulations.

ICEDE The ice cloud particle effective diameter input for visible/IR cloud
scattering simulations.

CLWDE The cloud liquid water particle effective diameter input for visible/IR cloud
scattering simulations.

INSO, WASO, SOOT, SSAM, SSCM,
MINM, MIAM, MICM, MITR, SUSO,
VOLA, VAPO, ASDU

The 13 OPAC aerosol particle types for visible/IR aerosol scattering
simulations.

BCAR, DUS1, DUS2, DUS3, SULP,
SSA1, SSA2, SSA3, OMAT

The 9 CAMS aerosol particle types for visible/IR aerosol scattering
simulations.

AER1, AER2, ..., AER30 Aerosol particle types 1-30. These are intended for use with user-generated
scaercoef aerosol optical property files.

SCATT_CC RTTOV-SCATT cloud cover

SCATT_CLW, SCATT_CIW,
SCATT_RAIN, SCATT_SP,
SCATT_TOTALICE

RTTOV-SCATT cloud and hydrometeor types

--END--

93

	1. Introduction
	2. Compilation and example code
	3. General description of interface
	3.1. Loading an instrument
	3.2. Changing RTTOV options
	3.3. Using the emissivity and/or BRDF atlases
	3.4. Calling the RTTOV direct model
	3.5. Calling the RTTOV K model
	3.6. Calling the RTTOV direct model with explicit optical properties
	3.7. Calling the RTTOV K model with explicit optical properties
	3.8. Calling the RTTOV-SCATT direct model
	3.9. Calling the RTTOV-SCATT K model
	3.10. Deallocating memory

	4. Specific information for Python
	5. Specific information for C/C++
	6. RTTOV classes
	6.1. General method for calling RTTOV
	6.2. Setting RTTOV options
	6.3. Loading an instrument
	6.4. Specifying surface emissivities and reflectances
	6.5. Using the emissivity and BRDF atlases
	6.6. Profile data for an RttovSafe object (C++ only)
	6.7. Profile data for an RttovScattSafe object (C++ only)
	6.8. Profile data for an Rttov object (C++ and Python)
	6.9. Profile data for an RttovScatt object (C++ and Python)
	6.10. Specifying explicit cloud/aerosol optical properties for visible/IR scattering simulations
	6.11. Calling RTTOV
	6.12. Accessing RTTOV outputs
	6.13. Deallocating memory

	7. Limitations of the wrapper
	Appendix A: Gas IDs
	Appendix B: RTTOV wrapper subroutines
	Appendix C: RttovSafe and Rttov classes (C++ and Python)
	Appendix D: RttovScattSafe and RttovScatt classes (C++ and Python)
	Appendix E: Profile class (used with RttovSafe objects; C++ only)
	Appendix F: Profiles class (used with Rttov objects; C++ and Python)
	Appendix G: ProfileScatt class (used with RttovScattSafe objects; C++ only)
	Appendix H: ProfilesScatt class (used with RttovScatt objects; C++ and Python)
	Appendix I: Options class (C++ and Python)
	Appendix J: Atlas class (C++ and Python)
	Appendix K: Enumeration types (C++)

