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SMOS Model

Abstract

In 2007 / 2008 ESA plans to launch the SMOS (Soil Moisture and Ocean Salinity) satellite mission. The
passive microwave radiometer will - for the first time ever - measure global microwave emission at L-band,
a wavelength that has a high potential for soil moisture remote sensing. Current operational soil moisture
analysis systems rely on 2 m temperature and relative humidity observations. These schemes are efficient
in improving the turbulent surface fluxes but often fail to improve soil moisture itself. To incorporate future
satellite observations over land in surface analysis systems new observation operators, i.e. land surface
emission models, have to developed. This report describes the community microwave emission model and
presents preliminary research outcomes on the calibrationof CMEM and systematic and random errors of
the modelled first guess.

1 Introduction

From 2007 / 2008 onwards, satellite-borne passive microwave observations at L-band will become available for
the first time ever through ESA’s (European Space Agency) Soil Moisture and Ocean Salinity mission (SMOS).
The sensitivity of L-band measurements to soil moisture hasbeen thoroughly analysed (e.g.Ulaby et al.(1986))
and the applicability of soil moisture retrievals has been demonstrated over the last decades (e.g.Jackson et al.
(1999)). In recent years, data assimilation studies also demonstrated the potential benefit of this observa-
tion type for hydrological modelling. However, due to the lack of measurements covering large spatial scales
the encouraging results were either obtained from observation system simulation experiments (OSSEs; e.g.
Balsamo et al.(2006)), which make use of synthetic observations, or for field experiments at the local or re-
gional scale (e.gSeuffert et al.(2003), Seuffert et al.(2004)). Only very few studies have been focussing on
the operational use of L-band observations in numerical weather prediction (NWP) applications.

Reichle and Koster(2005) assimilated global Advanced Microwave Scanning Radiometer (AMSR) derived
soil moisture fields (Njoku et al. (2003)) into NASA’s (North American Space Agency) catchment landsurface
model using an Ensemble Kalman Filter. Comparisons againstin-situ observations revealed that the analysed
soil moisture fields are more accurate than the satellite product or the model fields alone. In a later study,
Drusch (2006) used ECMWF’s Integrated Forecast System (IFS) to quantifythe impact of satellite derived
soil moisture on the surface analysis and local weather parameters: Assimilating the TRMM Microwave Im-
ager data set for the Southern United States (Gao et al.(2006)) analysed surface and root zone soil moisture
were improved when compared against observations from the Oklahoma Mesonet; the corresponding turbulent
surface fluxes and local weather parameters changed substantially.

In both studies derived soil moisture has been assimilated.Systematic differences between the modelled
first guess and the observations were minimized through cumulative distribution function matching in a pre-
processing step as described inReichle and Koster(2004) andDrusch et al.(2005). However, for operational
applications in NWP it is desirable to assimilate brightness temperatures or radiances rather than derived geo-
physical parameters. Within the framework of the European Land Data Assimilation Study (ELDAS) a proto-
type assimilation system has been developed for the single column version of the IFS (Seuffert et al.(2003),
Seuffert et al.(2004)). To transfer the first guess soil moisture into observation space the land surface mi-
crowave emission model (LSMEM;Drusch et al.(2001), Gao et al.(2004)) has been coupled to the NWP
model.

An optimal data assimilation system depends on a reliable description of the error statistics of the observations
and the modelled first guess. In this study we will focus on three research topics:

1. Develop a community microwave emission model (CMEM) for the NWP and SMOS communities with
a modular structure that allows to quantify the systematic and random errors introduced through different
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parameterizations in the forward operator.

2. Quantify systematic errors in the modelled first guess andcalibrate CMEM using historic L-band obser-
vations.

3. Quantify systematic and random errors based on operational NWP model output and the calibrated
CMEM.

2 NWP Model Interface and CMEM Concept

In general, the observed brightness temperature at the top of the atmosphereTBtoa is a function of soil, veg-
etation, and atmospheric parameters. In NWP applications,namely DA, the forward emission model input
data will mainly be obtained from the land surface componentof the NWP model. An interface is needed to
transform the geophysical parameters used in the NWP model into variables relevant for the radiative transfer
computations. This section briefly describes the land surface scheme used in ECMWF’s Integrated Forecast
System and its implications on the computation ofTBtoa.

The Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL; van den Hurk et al.(2000), Viterbo and Beljaars
(1995)) is incorporated in the IFS. The soil is discretized in fourlayers of 0.07, 0.21, 0.72, and 1.89 m depths
(from top to bottom). The soil heat transfer is described through the Fourier law of diffusion. It is assumed
that heat fluxes are predominantly vertical and that the effects of phase changes in the soil and the heat transfer
associated with vertical movement of water can be neglected(DeVries(1975)). At the bottom, no heat flux of
energy is assumed, while at the top, the boundary condition is the soil heat flux at the surface area weighted
over the tiles. The volumetric heat capacity is assumed to beconstant, the heat conductivity is given by a com-
bination of the values for the dry and the saturated heat conductivity, which is parameterized through the heat
conductivity of the soil matrix and the thermal conductivity of water (Peters-Lidard et al.(1998)).

Vertical movement of water in the unsaturated zone is computed using the Richards equation and Darcy’s
law. Functional relationships between the hydraulic conductivity and diffusivity and soil water are specified
according toClapp and Hornberger(1978). ECMWF’s land surface scheme uses a single loamy soil type for
the globe and the corresponding values for volumetric soil moisture at field capacity and permanent wilting
point are calculated based on the review of measurements presented byPatterson(1990). Soil moisture and
soil water conductivity at saturation are obtained fromCosby et al.(1984). Values for individual parameters
are summarized in Tab. 1. In order to keep the surface model assimple as possible the Integrated Forecast
System is presently using only one soil type (Viterbo (1996)). A model update introducing a global data set
with realistic geographical variation of the most relevantsoil parameters is planned for 2007.

Each gridbox in the model is divided in up to 8 tiles (bare ground, low and high vegetation without snow,
exposed snow, snow under high vegetation, interception reservoir, ocean/lakes, and sea ice). In each gridbox
two vegetation classes (high and low) are present. Twenty vegetation types, including deserts, ice caps, inland
water and ocean, have been defined from an external data base (U.S. Geological Survey(1999)). Each vegeta-
tion type is characterized by a set of fixed parameters for theminimum canopy resistance, spatial coverage, leaf
area index, a sensitivity coefficient describing the dependence of the canopy resistance on water vapor deficit,
and the root distribution over the soil layers. The fractionof a grid box covered by each of the tiles depends
on the type and relative area of low and high vegetation, and the presence of snow and intercepted water. A
skin temperature forms the interface between the soil and the atmosphere. It is calculated for each of the grid
box tiles separately by solving the surface energy balance assuming a complete coverage of the specific tile.
Although the surface is tiled, energy and water budgets are evaluated for a single atmospheric and soil profile
per grid box. Further details on the surface-atmosphere coupling are given in (ECMWF(2003)).
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Simplified solutions for the radiative transfer equation have been used for more than a decade to model land
surface emissivities (e.g.Kerr and Njoku(1990)). When vegetation is represented as a single-scattering layer
above a rough surface, the brightness temperature on top of the atmosphereTBtoa can be written as:

TBtoa = TBau +exp(�τatm) �TBad � rr �exp(�2� τveg) (1)+ exp(�τatm) � [Te f f �e�exp(�τveg)+Tc � (1�ω) � (1�exp(�τveg)) � (1+ rr �exp(�τveg)℄
whereTBau andTBad are the up- and down-welling atmospheric brightness temperature andτatm is the at-
mospheric opacity calculated from the single atmospheric grid box profile. rr is the reflectivity of the surface
(equal to one minus the emissivitye), τveg the vegetation opacity andω the single scattering albedo.Te f f is the
effective temperature of the surface medium and the canopy temperature (Tc) is usually considered to be equal
to either theTe f f or the air temperature.

As already mentioned earlier, model grid boxes are not uniform and can contain a variety of surface types. For
the computation of the brightness temperature 7 different tile types (t) with unique radiative characteristics have
been defined similar to the TESSEL tiles (a detailed description can be found in Section3). The aggregated
top-of-atmosphere brightness temperature for a grid boxTBtoa can now be written as the sum of the emission
of the individual tiles, weighted by their fractional coverageF and the atmospheric contribution for the specific
grid box:

TBtoa = TBau+exp(�τatm) � 7

∑
t=1

TBtov(t) �F(t) (2)

whereTBtov is the top-of-vegetation emission per tile. The radiative transfer equation forTBtov can be ex-
pressed in terms of the components; soil, vegetation and atmosphere:

TBtov = TBsoil �exp(�τveg)+TBveg+TBveg� rr �exp(�τveg)+TBad � rr �exp(�2� τveg) (3)

TBsoil = Te f f �e (4)

TBveg= Tc � (1�ω) � (1�exp(�τveg)) (5)

whereTBsoil andTBveg are the brightness temperatures from the soil and vegetation.

3 CMEM

To solve the tiled radiative transfer equation from Equation 2 we developed the Community Microwave Emis-
sion Model (CMEM), which is a hybrid version of L-MEB (Pellarin et al.(2003)) and LSMEM (Drusch et al.
(2001), Gao et al.(2004)) specifically designed for data assimilation applications in NWP frameworks. This
radiative transfer model comprises fourcomponentscomputing:

1. surface (TBsoil andrr ),

2. vegetation (TBveg andτveg),
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3. snow (modifications ofTBsoil andrr) and

4. atmosphere (TBau, TBad andτatm).

Technically, each component consists of a number ofmodules. Components can be changed and configured
individually. For the radiative transfer computations 7 physically unique tiles have been defined: four snow
free tiles (bare soil, low vegetation, high vegetation, water) and three snow covered tiles (snow on the three
land tiles). This division in tiles is similar to the TESSEL tiles, but differs in that; 1) ocean, sea ice and lakes
are all part of the water tile; 2) the interception reservoir, if at all modelled, is integrated in the vegetation water
content and 3) snow on bare soil is treated as a separate tile.In the following subsections the components and
their individual modules are introduced.

3.1 Surface component

The surface component, calculatingTBsoil and rr is further divided into four sub-components that contain:
dielectric models, the effective temperature, the emissivity and the roughness correction. All land surface tiles
use the soil component in the same (user defined) configuration. For the water tile the dielectric constant of
sea water or ice is calculated (depending on the presence of sea ice); roughness effects and foam coverage are
neglected.
This section describes the optional modules for the soil component.

In this study, soil texture information is derived from the Food and Agricultural Organization of the UN data set
(FAO; FAO (2000)). The FAO soil texture data are static at 10 km spatial resolution and distinguish between 3
soil texture classes (coarse, medium, fine). Sand and clay fractions have been computed from a look-up table
according toSalgado (1999). Loam is the residual of (1� sand� clay). From this we derive the following
texture information:� bulk density (BD[g=cm3℄) according toHillel (1980);

BD= 1:6�sand+1:1�clay+1:2� loam,� porosity (P[cm3=cm3℄);
P= ρb=ρs, whereρs is the specific density,� wilting point (WP[cm3=cm3℄) according toWang and Schmugge(1980);
WP= 0:06774�0:064�sand+0:478�clay� α [�℄ from table data (Wang and Schmugge, 1980);
α( f ghz>2:5) = 0,
α( f ghz<=2:5) = 100�W P,
α(max) = 26

3.1.1 Effective Temperature

TBsoil is the emissivity times the effective temperature of the emitting soil medium (see Equation4). Te f f is the
sum of the physical temperatures of the emitting layers, weighted by their relative contribution to the surface
emission. The Wilheit model (1978) approximatesTe f f by a weighting function over all the soil layers, but this
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Figure 1: Difference in effective temperature as calculated by two different models; Wigneron (2001) - Wilheit (1978),
and using the dielectric model of Dobson et al. (1985). In July, at 12:00 UTC, the difference reaches 8 K in the Sahara
where it is day time. In Asia and the America’s, there is almost no difference because the temperature gradients are small
at night.

is computational expensive. To limit the cost, the Te f f can be parameterized based on a surface temperature
(z 5cm) and a deep soil temperature (z 50cm):

Te f f Tdeep Tsur f Tdeep C (6)

TheC parameter is related to the temperature sensing depth and is calibrated differently by different authors:

Constant C-parameter (Choudhury et al., 1982), for f 0 6 to 10 Ghz;

Moisture dependant C-parameter (Wigneron et al., 2001), for f 1 4 GHz;

Dielectric constant dependant C-parameter (Holmes et al., 2006), for f 1 4 GHz.

At L-band, the sensing depth varies over several centimeters depending on soil moisture (10 to 50cm). The
model by Choudhury et al. (1982) is not soil moisture dependant. Wigneron et al. (2001) adapted the Choud-
hury model to account for the influence of soil moisture on the effective temperature. When the Wang dielectric
model is used, the modelled sensing depth does not vary linearly with soil moisture, but by a function of the
dielectric constant. The Holmes 2006 effective temperature model uses the Wang dielectric constant to model
the soil moisture dependance of sensing depth. All off these parameterizations can be calibrated on the global
scale to minimize the difference with the Wilheit effective temperature.

In this study, the default effective temperature model for L-band is the Wigneron model. This is because the
Dobson model is used for the dielectric constant and because it is better calibrated for global applications. Fig-
ure 1 shows the difference between the effective temperature as calculated according to Wilheit and Wigneron.
This shows the Wigneron model estimates the Te f f within 1% accuracy for most regions. Only at the middle of
the day, in dry regions where temperature gradients are high, does the Wigneron model overestimate the Te f f
by up to 3%. For higher frequencies ( f 2 5GHz), the Choudhury model is set as the default.

3.1.2 Dielectric models

The emissivity of the soil in the microwave range of the spectrum is highly dependant on soil moisture because
of the big difference in dielectric constant (k) between water (k 80) and soil particles (k 4). The dielectric
constant of the soil medium εsoil is primarily a function of volumetric soil water content VSWC, temperature
and soil texture. The two most commonly used semi-empirical, texture dependant, dielectric models are:
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Figure 2: Soil dielectric constant as a function of moisturecontent for different soil types; clay (dash), clay-loam (solid)
and sand (dash-dot); according to a) Wang withεwat of sea; b) Dobson withεwat of soil. Both the real and the imaginary
part of the dielectric constant are shown in the figure, with the real part always having a higher value.� Wang and Schmugge (1980), calibrated forf = 1:4 to 5 GHz, distinguishes between bound water and

free water and;� Dobson et al. (1985), developed forf = 1:4 to 18 GHz.

The Wang and Schmugge model distinguishes between the boundand free water in the soil which results in a
nonlinearity of dielectric constant versus volumetric soil moisture (Fig.2). The Wang and Schmugge model
needs the texture dependant parameterα for the conductivity loss factor at frequencies below 2.5 GHz. From
the table data the simple relationshipα = 100�WP is used, whereWP is the wilting point of the soil.

The Dobson model is more thoroughly parameterized regarding soil texture and for a wider range in frequencies
( f = 1:4 to 18GHz) than the Wang and Schmugge model. Atf = 1:4 GHz, it does not fully account for
the dielectric properties of bound water at low moisture content (Dobson et al.(1985)). This results in an
overestimation of the dielectric constant.

Matzler(1998) developed a simpler dielectric constant relation for the special case ’very dry sand’:

εsoil = 2:53+ (2:79�2:53)(1:� j � ( f=0:27)) + j �0:002 (7)

where j = 0+1i and f [GHz℄ is the frequency. This is used in the L-MEB model and includedin CMEM for
the frequency range up to 10 GHz.

The choice of dielectric model changes the predicted brightness temperatures significantly (Fig.3). Differences
in regions with sandy soils can reach 20 K. The default model is the Dobson model, and Matzler’s parameteri-
zation is used for very dry sand. The input fields are theVSWCsur f andTe f f, except in the multi-layer model of
Wilheit, which uses the temperature and moisture of the different layers directly.

Models to calculate the dielectric constant of waterεwat are also included in this module. They include the pure
water, saline water (see Figure4) and soil water options:
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Figure 3: Difference in Brightness temperature ∆TBtoa H at θ 50o with TBtoa H calculated using different dielectric
models (Dobson et al. (1985) minus Wang and Schmugge (1980)).

0 10 20 30
Frequency (GHz)

0

20

40

60

80

tnatsno
C cirt celei

D

Figure 4: Dielectric constant of sea water at 20oC at salinities of 0, 6, 30 and 60%o for a frequency range of 1 to 30
GHz. Klein and Swift (1977). The real part of the dielectric constant decreases steadily for higher frequencies and higher
salinities. The imaginary part of the dielectric constant has a more non-linear relation with frequency and increases with
salinity.

pure water (Ulaby et al., 1986);

saline water (Stogryn, 1971);

saline water (Klein and Swift, 1977), for f 1 4 to 30 GHz, best for f 10GHz;

soil water adaptation of Stogryn (Dobson et al., 1985), for f 1 4 to 18 GHz;

soil water adaptation of Klein and Swift, for f 1 4 to 18 GHz.

Klein and Swift is the most recent and will be used as the default. The dielectric models for the soil medium
use the dielectric constant of soil water with a salinity of salsoil 0. The surface dielectric constant of the water
tile is calculated using the saline water case with the salinity set to a constant value of salsea 32 5psu for sea
water (LSM 0 5) and the value of salsoil for small lakes and rivers.

In the case of sea ice, the dielectric constant is calculated according to Hallikainen (1995). When the soil
temperature is below the freezing point, some or all off the soil water will be frozen and have the dielectric
constant of ice. To account for this the dielectric constant of non-frozen soil is mixed with the dielectric
constant of ice on the basis of soil temperature. The default fraction of frozen soil water is 0, for T 0 5C
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this is 0.5 and forT <�5C the fraction is 1. Note that the L-MEB model used the variable’frozen soil water
content’ to calculate the fraction of frozen versus non-frozen soil water.

3.1.3 Smooth Surface Reflectivity

The reflectivity of a flat surfacers is given by the Fresnel law that defines the partition of electromagnetic
energy at a dielectric boundary:

rsH(θ) = ������µscos(θ)�qµsεsoil�sin2(θ)
µscos(θ)+qµsεsoil�sin2(θ) ������2 (8)

rsV(θ) = ������εsoil cos(θ)�qµsεsoil�sin2(θ)
εsoil cos(θ)+qµsεsoil�sin2(θ) ������2

whereµs is the soil magnetic permeability, assumed to be unity. As soil moisture increases,εsoil increases and
the reflectivity increases. The Wilheit model (1978) calculates thers for a multi-layered soil, this is physically
more correct but computationally more expensive. The layered approach makes it possible to use all the avail-
able profile data of temperature and soil moisture, without simplifying by means of the effective temperature.
It is included for validation purposes only.

3.1.4 Roughness models

Because the natural land surface is generally not a specularreflector at microwave wavelengthsrs is corrected
for roughness using one of the following models:� Q/h model (Choudhury et al.(1979), Wang and Choudhurry(1981)), for f = 1�10GHz

h= (2kσ)2, with wavenumberk[cm℄ andσ [cm℄ the rms height of the surface� Q/h modelWigneron et al.(2001), for f = 1:4GHz
h = 1:3972� (s=Lc)0:5879 with correlation lengthLc = 6cm ands [cm℄ the standard deviation of surface
height� Q/h(VSM) model (Wigneron et al., 2001), for f = 1:4GHz
h= 0:5761(V SM)�0:3475� (s=xlc)0:4230� Q/h(VSM,vegetation) model ATBD, forf = 1:4GHz� kshorizontal emission based model (Wegmueller and Matzler, 1999), for f = 1�100GHz

Most of these models are based on Choudhury’s Q/h formulation of roughness and polarization effects for
microwave frequencies:

rr(P1) = (Q � rs(P2)+(1�Q) � rs(P1)) �exp(�h�cosNrp(θ)) (10)
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Figure 5: Roughness parameters: a) Roughness height h as a function of s=Lc according toWigneron et al.(2001), solid
line is not moisture dependant, the dashed lines are for0:05, 0:15, 0:35 and0:50 cm3=cm3 from top to bottom; and b)
Cross polarization parameter Q as a function of frequency, for σ is 0.15, 0.5 and 1 cm.

whereQ is the polarization mixing factor.Q can be considered zero at L-bandWigneron et al.(2001) and in-
creases slightly with frequency:Q= 0:35�(1:0�exp(�0:6�σ2 � f ghz)) (Fig. 5). Only the roughness heighth is
changed in the various models. In ESA’s Algorithm Theoretical Baseline Document (ATBD) on the operational
soil moisture retrievalh is formulated as a function of soil moisture with vegetationdependant settings, this
version is not yet fully implemented.

Wegmueller used a different approach to develop a semi-empirical model with a wide range of validity. In this
model both horizontal and vertical polarized reflectivity is derived from thers(H):

rr(H) = rs(H) �exp(�1� (k �σ)p0:10�cos(θ )) (11)

For(θ <=60) : rr(V)= rr(H) �cos(θ)0:655 and for(60< θ <=70) : rr(V) = rr(H) �(0:635�0:0014�(θ �60)).
For now, the Wigneron model will be used with roughness as a global constant.

3.2 Vegetation Component

The surface emission is attenuated by the vegetation and it acts as a source of emission itself (TBveg). The
attenuation is quantified by the atmospheric opacityτveg and is dependant on the vegetation characteristics,
most importantly vegetation water contentVWC. The following vegetation models are included:� Effective Medium theory (Kirdiashev et al., 1979), for f = 1 to 7:5 GHz� Geometrical Optics theory (Wegmueller et al., 1995), for f = 1 to 100GHz� b parameter approach (Wigneron et al., 1995), for f = 1 to 10 GHz

Vegetation water content has been derived from the ECOCLIMAP LAI data set (Masson et al.(2003)) following
Pellarin et al.(2003):

VWC= 0:5�LAI (12)
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for grasslands and crops; the vegetation water content for rain forest, deciduous forests and coniferous forests
has been set to 6, 4 and 3kgm�2 (Pellarin et al.(2003), respectively. In Wigneron’s modelτveg is also related to
theb parameter as defined in (Jackson and Schmugge, 1991). In both Kirdiashev’s and Wegmueller’s models
the structure coefficientageo is used in the computation ofτveg.

The low and high vegetation fraction, biome cover, dominanttype and LAI are either obtained from ECO-
CLIMAP (Masson et al., 2003) data or TESSEL (ECMWF) data. The ECOCLIMAP is a static vegetation
dataset and contains monthly data for LAI and vegetation cover (crop cover is a function of LAI). The TESSEL
dataset has no annual cycle in LAI (van den Hurk et al., 2000). The vegetation temperature is by default set
equal to the surface temperature, but 2 m air temperature is also available as an option.

Water interception by the canopy after precipitation or dewcan be very significant relative to theVWC. Poten-
tially this effect can be accounted for by adding the interception reservoir to the low vegetationVWC. In the
latest version of L-MEB the occurrence of high interceptionis flagged because interception data is considered
too unreliable.

Since the annual trendVWCis important to our model, ECOCLIMAP will be the default data. In Section5 the
influence of the vegetation on the top-of-atmosphere brightness temperature is studied.

3.3 Snow Component

When snow is present, the land tiles are redistributed basedon the snow cover fraction. The vegetation parame-
ters are the same as for the tile with no snow and the calculation of the top-of-vegetation brightness temperature
TBtov is the same. For the tiles ’bare soil with snow’ and ’low vegetation with snow’ the snow is added as
an extra layer above the vegetation. The effect of this extralayer on theTBtov is calculated according to the
HUT-snow emission model for a single snow layer (Pulliainen et al., 1999).

For the tile ’high vegetation with snow’ only the snow on the surface is considered. The emission from the soil
is computed with the effective temperature equal to the surface temperature. The extra snow layer is inserted
and the emission above the snow layer is calculated according to Pulliainen et al.(1999). This snow corrected
surface emission passes through the vegetation layer according to the vegetation component with the same
values as for the high vegetation tile.

The snow cover is not analysed; for this study it is considered 100% if the snowdepth is greater than zero. The
snow water content is set to 0:1[cm3=cm3℄ and the snow temperature is equal to the soil temperature of the first
layer.

3.4 Atmospheric Component

TheTBtov is modified by the atmosphere before it reaches the satellitesensor. Attenuation of radiation is quan-
tified by the atmospheric opacityτatm. Besides this, the atmosphere contributes through upward and downward
emission partsTBau andTBad. TBad contains the cosmic background radiation. The atmosphericvariables can
calculated using the following models:� Profile approach afterLiebe(2004);� L-MEB, for f = 1 to 11GHz;� Lookup tableUlaby et al.(1986), for f = 1 to 90GHz.
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Table 1: Module choices for CMEM.

digitchoice. 0 1 2 3 4 5
1. Soil dielectric constant - Wang&Schmugge Dobson - -
2. Te f f Tsur f Choudhury Wigneron Holmes - -
3. Reflectivity - Fresnel Wilheit - - -
4. Roughness no Choudhury Wigneron1 Wigneron2 Wigneron3 Wegmueller
5. Vegetation no Kirdyashev Wegmueller Wigneron - -
6. Atmosphere no Pellarin Liebe Ulaby - -
7. Tveg - Tsur f Tair Tskin - -
8. Veg Data - ECOCLIMAP TESSEL - - -

Similarly to the soil, the atmosphere is a medium with vastlyfluctuating temperature and moisture profiles.
Computation of the atmospheric factors considering atmospheric profiles of pressure, humidity, and temperature
is described byLiebe(2004), this will only be used for validation of the simpler parameterizations.

For frequencies below 11 GHz, the vapor dependency can be disregarded andτatm can simply be related to
the geopotential height at surface [m]. For frequencies above 11 GHz, accounting for water vapor density is
required. A simple lookup table based on frequency of theτatm as a function of surface water vapor density is
proposed byUlaby et al.(1986).

3.5 Configuration of CMEM

The modular design of CMEM makes it possible to easily configure the model to the users specifications.
There are two files that together define the model configuration; 1) the ’namelist’ file which contains the model
choices for each module and 2) the ’setup’ file which containsthe radiometric specifications, global constants
and global parameters.

CMEM documents the module setup in the output filename in the form of an 8 digit code. The numbers in this
code correspond to the eight most important configuration choices as shown in Table1. All these modules have
been discussed in the above sections. The zero option for a module means that a process is not modelled.

Table2 summarizes the default set up of CMEM, L-MEB and LSMEM. In addition, values for the most im-
portant coefficients are given. Figure6 shows an example of the synthetic brightness temperature athorizontal
(a) and vertical polarization (b) for 1 July 2005 as computedusing the CMEM standard set up. The range in
temperatures from sea water, to ice and land areas is similarto what we find for C-band satellite data (e.g.
AMSR-E).
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(a) TBtoa H

(b) TBtoa V

Figure 6: Brightness temperature, horizontal and vertical polarization at θ 50o for 1 July 2005, using the default
CMEM setup.

Final Report SMOS-CMEM 13



SMOS Model

Table 2: Model setup parameters for L-band.

L-MEB LSMEM CMEM
Modules Dielectric Dobson Dobson Dobson

Te f f Wigneron Tsur f Wigneron
Reflectivity Fresnel Fresnel Fresnel
Roughness Wigneron 1 Wegmueller Wigneron 2
Vegetation Wigneron Kirdyashev Kirdyashev
Atmosphere Pellarin Liebe Pellarin

Input Data Veg Data ECOCLIMAP TESSEL ECOCLIMAP
Tveg Tsur f Tair Tsur f

Parameters salsoil[psu℄ 0 0.65 0
salveg[psu℄ 6 6 6
salsea[psu℄ 32.5 - 32.5
σ [cm℄ 0.15 0.5 2.2
Q[�℄ 0 f(sigma) 0
VWC[kg=m2℄ f(vegtype) 1.0/4.0 f(vegtype)
ω [�℄ 0.05/0.15 0.05 0.05
ageo[�℄ (0.33,0.33) (0.33,0.33) (0.33,0.66)

4 Towards the assimilation of SMOS L-band brightness temperatures into nu-
merical weather prediction models: A calibration / validation study based
on ERA-40 re-analyses and Skylab observations

This section presents results on the calibration of CMEM using historic data and an initial quantification of
systematic differences on the continental scale. Sections4.2 and 4.3 summarize parts which have already been
addressed earlier.

4.1 Skylab S-194 Observed Brightness Temperatures

Skylab was a polar-orbiting satellite mission covering theperiod from May 1973 to July 1977. It’s nominal
altitude was 435 km; the orbit period was 93 minutes. Among various remote sensing instruments was the
S-194 passive microwave radiometer. This sensor was a nadirviewing L-band radiometer operating at 1.4 GHz
(Jackson et al.(2004)). The resolution of a single observation is approximately110 km, the distance between
the centres of two consecutive footprints is 2.5 km.

Collecting data from S-194 required astronauts onboard thesatellite. Consequently, the number of observations
is limited to the following periods: 14 May - 22 June 1973, 28 June - 25 September 1973, and 16 November
1973 - 8 February 1974. The original S-194 data have never been archived.Jackson et al.(2004) recovered the
observations used byEagleman and Lin(1976); the data set and a comprehensive description are now available
underhttp://disc.gsfc.nasa.gov.

In total, nine tracks of observations have been available (Fig. 1). Although the number of observations is quite
limited it should be emphasised that a large variety of landscapes, vegetation types and climates is covered.
Areas monitored by S-194 include the Rocky Mountains, the Central Great Plains, the Eastern US, and large
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parts of the Amazon rain forests. In addition, the observation dates comprise several seasons including winter
time observations. Consequently, this data set is useful tocalibrate land surface emission models for global
NWP applications.

4.2 ERA-40 Based Modelled Brightness Temperatures

The ERA-40 reanalysis data set (Uppala et al.(2005)) comprises the period from mid-1957 to 2001. The data
sets used in the analysis comprise various satellite observations as well as ground based measurements and
conventional synop data. These data sets were assimilated through the 3D-Var analysis scheme. The system
made use of the Integrated Forecast System at T159 spectral resolution (� 1:125o horizontal spacing) with 60
vertical levels. The surface scheme within the IFS is the Tiled ECMWF Scheme for Surface Exchanges over
Land (TESSEL) as described invan den Hurk et al.(2000). The soil is discretized in four layers of 0.07, 0.21,
0.72, and 1.89 m depths (from top to bottom). Vertical movement of water in the unsaturated zone is computed
using the Richards equation and Darcy’s law. Functional relationships between the hydraulic conductivity and
diffusivity and soil water are specified according toClapp and Hornberger(1978). Each grid box in the model
is devided in up to eight tiles (bare ground, low and high vegetation without snow, exposed snow, snow under
high vegetation, interception reservoir, ocean/lakes, and sea ice). The vegetation data base contains 20 different
types, which are characterized by a set of fixed parameters. Although the surface is tiled, energy and water
budgets are evaluated for a single atmospheric profile and soil profile per grid box. The archived fluxes for a
grid box are area weighted-averages as derived from the individual tiles.

We used the Community Microwave Emission Model (CMEM) to solve the radiative transfer equations based
on the ERA-40 reanalysis data set. The tiles used in CMEM are similar to the TESSEL tiles, but differ in
that: 1) ocean, sea ice and lakes are all part of the water tile; 2) the interception reservoir, if at all modelled, is
integrated in the vegetation water content and 3) snow on bare soil is treated as a seperate tile.

4.3 Auxiliary Data Sets and Initial CMEM Setup

For low frequencies the observed brightness temperature atthe top of the atmosphere depends on a number
of variables. Jones et al.(2004) ranked the main variables and parameters entering Eq. 1 according to their
impact onTBtoa: Volumetric soil moisture, vegetation water content, soilroughness parameter, vegetation
structure coefficient, effective soil temperature, vegetation single scattering albedo, soil bulk density, vegetation
temperature, and soil texture. For this study, ERA-40 provides soil moisture fields (top 7 cm layer), soil
temperature, snow depth, and 2 m temperatures as an approximation for vegetation temperature.

Vegetation water content has been derived from the ECOCLIMAP LAI data set (Masson et al.(2003)) following
Pellarin et al.(2003):

VWC= 0:5LAI (13)

for grasslands and crops; the vegetation water content for rain forest, deciduous forests and coniferous forests
has been set to 6, 4 and 3kgm�2 (Pellarin et al.(2003), respectively for the first model calibration set up. The
FAO soil texture data are static at 10 km spatial resolution and distinguish between 3 soil texture classes (coarse,
medium, fine) (FAO (2000)). Sand and clay fractions have been computed from a look-uptable according to
Salgado(1999). The 10 km data sets have then been aggregated to T159 spectral resolution and the dielectric
constant of wet soils has been computed followingDobson et al.(1985). TheDobson et al.(1985) model has
been used previously in several L-MEB and LSMEM studies. It has to be noted that vegetation and soil param-
eters for the CMEM computations are not identical with the ones used for ERA-40. However, the operational
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Table 3: Setup for Skylab studies.

Setup Roughness Vegetation σ ω(L;H) b (L,H) ageo(L;H) VWc(trop)
A Wigneron Q/h Wigneron 0.15 (0:05;0:15) (0.2, 0.33) 6
B Wigneron Q/h Wigneron 2.2 (0:05;0:05) (0.2, 0.33) 6
C Wigneron Q/h(VSM) Wigneron 2.2 (0.05, 0.05) (0.2, 0.33) 6
D Wigneron Q/h(VSM) Kirdyashev 2.2 (0.05, 0.05) (0.33, 0.33) 6
E Wigneron Q/h(VSM) Kirdyashev 2.2 (0.05, 0.05) (0.33, 0.66) 10

forecast system at ECMWF will be revised within the next months to incorporate both vegetation and soil data
sets. In addition, these auxiliary data sets will also be used in ESA’s operational soil moisture retrieval.

Global data sets for soil roughness, vegetation structure coefficients, and vegetation single scattering albedo do
not exist. In general, values have been derived from laboratory measurements or field experiments for a limited
range of soil and vegetation types and specific parameterizations.

(1) Soil roughness. Physically based models generally depend on the characteristics of (measured) surface
height profiles, namely the standard deviation of surface height σ and the correlation lengthsL (Fung (1994)),
and volumetric soil moisture. For large scale applicationsfocussing on the retrieval / analysis of soil moisture
simplified semi-empirical models are better suited. The majority of these simplified models uses a roughness
heighth and a polarization mixing parameterQ. Wigneron et al.(2001) developed two parameterizations for
h as a function of (i)σ and L and (ii) σ and L and volumetric soil moisture. Both parameterizations are
independent of incidence angle and polarization. This approach is well justified for the Skylab data analysed in
this study; to make optimal use of the future multi-angular SMOS observations the parameterizations may have
to be modified. For the first guess, values of 0.15 cm and 6.0 cm have been assigned forσ andL, respectively.

(2) Vegetation structure coefficient. Again, simplified semi-empirical models are used to characterize the in-
fluence of the vegetation on the observed brightness temperatures. Key parameters for the computation of
the canopy opacity are the vegetation water content and the vegetation structure coefficient. In the ’classical’
parameterization introduced byKirdiashev et al.(1979) the vegetation structure coefficientageo includes the
frequency, the dielectric constant of saline water, the density of water, and the incident angle. Other approaches
(e.g.Jackson et al.(1999), Wigneron et al.(1995)) combine all these quantities in the so-called b-parameter.
A compilation of b-parameter values from field experiments is available throughVan de Griend and Wigneron
(2004). For the initial computations the parameterization described in Wigneron et al.(1995) is used with b-
parameter values of 0.2 and 0.33 for low and high vegetation,respectively. These are standard values, which
have also been used in the global forward modelling study byPellarin et al.(2003).

(3) Vegetation single scattering albedo. The single scattering albedoω is defined asκsp=(κsp+κap), with κap

the absorption coefficient andκsp the scattering coefficient. In various studies covering thefrequency range
from 1.4 to 37 GHz values from 0.03 to 0.127 were found (Kerr and Wigneron(1995)). For the first guess
values of 0.05 and 0.15 have been used for low and high vegetation, respectively (Pellarin et al.(2003)).

The set up for the different CMEM runs described in the study are summarized in Tab.3. Model set up ’A’
refers to the first guess set up as outlined in the preceding paragraphs. It mimics the L-MEB configuration as
used in (Pellarin et al.(2003)).
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Figure 7: Spatial and temporal coverage of the Skylab S-194 observations. Blue tracks have been used for the calibration.
The validation has been based on the red tracks.

4.4 Calibration Results

The spatial resolution and the sampling rate of the observations and the ERA-40 data set are different. Conse-
quently, we averaged Skylab observation using the nearest neighbour technique to produce tracks of observed
brightness temperatures at the ERA-40 grid. This is a reasonable approach since (i) the S-194 footprints are
smaller than an ERA-40 grid box and (ii) brightness temperatures should be averaged rather than geophysical
parameters to avoid errors introduced through non-linearities in the radiative transfer calculation (Drusch et al.
(1999a), Drusch et al. (1999b)). Throughout the article these mean values have been compared. The variability
of the observations within each ERA-40 grid box has been used to identify areas with a significant amount of
open water bodies or coastal regions, which may not be treated correctly at T159 spectral resolution in the ERA
data set. Whenever the minimum - maximum difference exceeded 10 K, the observation / model data pair has
been rejected.

For the calibration part four tracks have been selected. They are shown in blue in Fig. 7 and cover North
and South America and include winter and summer observations. The comparison between the initial set up
’A’ as described in the previous paragraph and the observations is shown in Fig. 8 The spatial distribution
of brightness temperature differences (observation - model) shows a good coverage of calibration data for
North America. In South America, one transect including tropical forest has been obtained (Figs. 8a,b). The
differences for North America can be as large as 40 K and in general, the modelled TBtoa are characterized
by a low bias. The maps suggest that the differences over mountain areas and the Western US are generally
larger than over the Central US. The scatter plots reveal a correlation of 0.66 and a bias of 19.4 K for the South
America data (Fig. 8d). The data pairs over North America exhibit a correlation of 0.22 and a bias of 12.9 K.
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Figure 8: Comparisons between observed and modelled brightness temperatures (CMEM set up ’A’; Tab. 1): (1) Spatial
distribution of observed TB - modelled TB (upper panel), (2)the corresponding scatterplots for North America (middle,
left) and South America (middle, right), and (3) brigthnesstempoerature differences as a function of vegetation water
content (bottom panel). Blue crosses represent mean valuesfor binned data.
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The January 14 data are different in that they are almost biasfree (Fig.8c). This is somewhat surprising since
large parts of the Western and Central US were snow covered during the overpass time and winter conditions
are generally difficult to capture by emission models. However, Figs. 8a-d suggest a brightness temperature
difference dependency on vegetation type. Among the various geophysical vegetation parameters the water
content has the largest influence on the computed brightnesstemperatures. Figs.8e,f show the the relationship
between vegetation water content and brightness temperature difference. The blue ’plus’-signs indicate average
values for binned data. For North America the data have been averaged for 0.5kgm�2 intervals covering the
range from 0 to 6kgm�2; the snow data from January 14 have been excluded since it canbe assumed that most
of the vegetation and the soil was snow-covered. For North America differences exceeding 40 K are obtained
for sparsely vegetated areas. With increasing vegetation water content values decrease to� 10 K. For the
tropical forest in South America the differences between observed and modelledTBtoa are independent from
vegetation water content at values around 20 K. These results point towards problems with the choice of the
soil roughness, which is most prominent in sparsely vegetated areas, and the vegetation structure coefficient
over regions with higher vegetation water contents.

To increase the modelled brightness temperatures the rms roughness height was increased to 2.2 cm. This
value represents a medium-rough to rough surface and is supported through the field experiment described in
Choudhury et al.(1979). With the correlation length L of 6 cm a a slope parameter ofσ=L = 0:36 has been
obtained. This is an average value, which is very well covered by observations used to derive the roughness
parametrization byWigneron et al.(2001). It translates into a roughness height h of 0.77. In addition, the single
scattering albedo for high vegetation types has been reduced to 0.05. As already stated above, a global data set
for the single scattering albedo does not exist. This modified model set up is summarized as ’B’ in Tab.3. The
brightness temperature comparison for model set up ’B’ is shown in Figs.9a,b. The bias for North and South
America data pairs has been reduced to -7.3 and -8.1 K respectively. The correlation between observations and
model results is higher for North America and slightly lowerfor South America when compared against the
results from model set up ’A’. As one would expect, the wintertime observations from January 14 are least
affected by the changes in roughness and vegetation. It is worth noting that the dynamic range in modelled
brightness temperatures has hardly changed; the data show substantially less variability than the observations.

For model set up ’C’ the modified parametrization for the computation ofh including the soil moisture depen-
dency has been selected (Wigneron et al.(2001)). For aσ=L ratio of 0.66,h values from� 0:45 to� 1:25 are
obtained for soil moisture values of 35 and 3 %, respectively(Wigneron et al.(2001)). Again, the bias and rms
errors over both continents is reduced (Figs.9c,d). In addition, the dynamic range in the modelled brightness
temperatures is slightly increased.

In the subsequent CMEM set ups the vegetation parameterization by Kirdiashev et al.(1979) has been used.
For configuration ’D’ a geometrical structure coefficienta of 0.33 has been assigned for low and high vegetation
types (Fig.9e,f). The North American data sets agree very well with a correlation coefficient of 0.6 and bias
below 6 K. Over South America the modelledTBtao are too low when compared against the corresponding
observations. In configuration ’E’ the vegetation water content for tropical forest has been increased to 10
kgm2 and the structure coefficienta has been increased to 0.66 for high vegetation types. This value is more
appropriate for stem dominated species (Wegmueller et al.(1995)). This set up is ideal since it yields acceptable
biases over both continents. In addition, the dynamic rangeof the modelled values is comparably large (Figs.
9g,h).

The strong influence of the vegetation parametrization on the dynamic range of modelled brightness temper-
atures is somewhat surprising. In Fig.10 TBtoa has been computed as a function of vegetation water content
for high and low soil moisture values. The curves are ’nicht stetig’ because of the change from low vegetation
tile to high vegetation tile at a vegetation water content of3 kgm2. For low vegetation water contents both
vegetation parameterizations result in a difference of� 35 K.
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Figure 9: Differences between observed and modelled brightness temperatures for the CMEM set ups B to E (from bottom
to top) as described in Tab.3.
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Figure 10: Sensitivity to VWC for the two vegetation models at L-band: (a)Wigneron et al.(2001), (b) Kirdiashev et al.
(1979). Solid lines show the TBtoa for VSM= 5 % and dashed lines for VSM= 40%. The roughness height h is modelled
following the soil moisture dependentWigneron et al.(2001) model with aσ of 2.2 cm.

Using theWigneron et al.(2001) model the vegetation becomes more and more opaque with increasing water
content. For low vegetation tiles with 3kgm2 VWC a soil moisture difference of 35 % results in a brightness
temperature difference of 5 K. Due to the lower fractional coverage of bare soil this difference is reduced to 1
K for high vegetation tiles (Fig.10a). TheKirdiashev et al.(1979) formulation results in a more transparent
vegetation layer. To get an opaque canopy VWC values of 10kgm2 are required.

4.5 Validation and Discussion

Observations from five overpasses have been used to validateCMEM set up ’E’ (Fig. 1, red tracks). For North
America the reference configuration ’A’ results in systematic and random errors that are comparable to the
values obtained for the calibration overpasses: the bias is9.38 K and the rmse is 14.2 K. With configuration
’E’ these values are reduced to 2.03 K and 11.4 K, respectively; the correlation coefficient is 0.67 (Fig. 5). Set
up ’E’ does not improve the modelled brightness temperatures for January 24. This particular overpass crosses
the US from the northwest to the south east. This area is not well covered through the calibration data set and
the parameters obtained from the calibration may not be appropriate.

Over South America the calibrated CMEM brightness temperatures compare very well with the observations.
For the bias and the correlation coefficient values of -2.4 K and 0.75 have been obtained (Fig. 6). For three
ERA-40 grid boxes over the Amazon region the modelled brightness temperatures are more than 16 K higher
than the corresponding observations. The northern most data pair (Fig. 6a,b) showing a difference of 22 K
includes the ’Serra da Mocidade’ plateau and the ’Rio Branco’, the footprint further to the south is strongly
influenced by the ’Rio Negro’ and the most southern data pair is located over an extended swamp area, the
’Ilha Tupinambarama’. It is likely that these complex terrains with a significant amount of open and vegetation
covered water bodies are not represented correctly in the ERA-40 data set. If the data points were excluded from
the analysis the values for correlation coefficient, bias, and rms were 0.83, -0.93 K, and 4.2 K, respectively.

Apart from the S-194 data used in this study, no spaceborne passive microwave L-band observations have been
available on the continental scale. Parameterizations andcoefficients for the land surface emissivity modelling
have been derived form laboratory measurements and field experiments covering local to regional scales. This
study demonstrates that it is possible to calibrate a state-of-the-art emission model for NWP data assimilation
applications and for operational soil moisture retrievals. The results suggest that the proposed CMEM set up
and its coupling to NWP model fields can be applied to a wide range of climates.
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However, backward and forward radiative transfer modelling both depend on a number of auxiliary data sets
and geophysical parameters, which are poorly known at largespatial scales. Each of these data sets has sys-
tematic and random errors. These (systematic) errors partly determine the value of a calibration parameter,
e.g. the rms surface roughness heightσ . Consequently, the values found in this study are not necessarily
transferable to different NWP models; i.e. a land surface model with a different soil moisture climatology may
need a different value for the roughness parameter. Following this rationale it is impossible to strictly validate
individual parameterizations. The fact that theKirdiashev et al.(1979) parameterization yields better results
than theWigneron et al.(2001) formulation could be an artefact of the NWP - CMEM coupling,the choice of
the vegetation data set, or the definition of bare soil fraction for low and high tiles.

Although it is feasible to reduce the bias between the modelled brightness temperatures and the observations
other systematic differences remain present. With the current NWP / CMEM set up it has not been possible to
model the observed dynamic range of brightness temperatures. The observations seem to be characterized by
higher spatial and temporal variabilities. This is a well known feature, which could be related to the difference
in the vertical resolution of both data sets.Wilker et al.(2006) showed that for a given mean soil moisture value
different vertical profiles in the top 7 cm layer could resultin brightness temperature differences exceeding 5 K.
However, these systematic differences should be minimizedfor the assimilation of brightness temperatures us-
ing Best Linear Unbiased Estimate (BLUE) techniques. Cumulative distribution function matching as proposed
by Drusch et al.(2005) is one potential method.

This study addressed systematic differences between modelled brightness temperatures and the observations.
As mentioned above these differences should be minimized for data assimilation applications to obtained sta-
tistically optimal analyses of soil moisture. The weight ofthe observations and the modelled first guess in the
analysis is determined through their error characteristics. The rms errors obtained in this study include both,
the first guess uncertainty and the observation error. Sincethe observations taken every 2 km along the flight
path were averaged to represent an ERA-40 grid box it is very likely that the main contribution to the rms
error values originates from the modelled brightness temperatures. For the ERA-40 soil moisture rms errors
exceeding 4 % have been found when compared against in-situ observations over the US Southern Great Plains
(Drusch et al.(2004)). A second major source of uncertainty is introduced through the vegetation data set. The
ECOCLIMAP data represent an annual cycle but do not take inter-annual variability or variability on short time
scales into account. A more detailed analysis on random errors will be needed once the SMOS observations
are available.
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Figure 11:
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Figure 12:
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5 Sensitivity to vegetation

The top-of-atmosphere brightness temperature is very sensitive to the presence of vegetation. CMEM relies
on static input fields for the global distribution of vegetation characteristics and land cover. This makes it not
only sensitive to the vegetation model, but also to the inputdata. Any calibration of the vegetation model will
minimize the errors in the model and the vegetation databasetogether. In this section we try to quantify the
sensitivity to vegetation by: 1) comparing the difference in TBtoa as derived with ECOCLIMAP and TESSEL;
and 2) see how this difference is influenced by the choice of vegetation model.

5.1 Materials and Methods

The CMEM model makes use of a static vegetation database to quantify the radiative properties of the vegetation
in each cell. For each land cell this database includes: low and high vegetation fraction, biome cover, dominant
vegetation type and LAI. Vegetation water content is related to LAI for low vegetation and for high vegetation
a constant value is assigned depending on vegetation type. The current implementation of CMEM makes it
possible to switch between two different vegetation databases.

The first database is the one used in the ECMWF TESSEL surface scheme (van den Hurk et al., 2000). The
TESSEL database contains 20 vegetation types with fixed values for all the vegetation characteristics. This
means there is no annual cycle in LAI, nor in biome cover. The second available vegetation database is ECO-
CLIMAP (Masson et al., 2003) . This is the newest of the two vegetation databases and has 215 ecosystem
types based on a combination of existing land-cover and climate maps with satellite data. In ECOCLIMAP
there are for each ecosystem monthly estimates of LAI. Biomecover (BC) is a constant 95% or 99% for all
ecosystems, with the notable exception of crops where it is related to LAI (BC= 1�EXP(�0:6 �LAI)) and
therefore changes through the year.

Besides the input of vegetation characteristics there are also three different vegetation models coded in CMEM
to calculate the vegetation opacity (See section3.2). They contain the Effective Medium theory (Kirdiashev et al.,
1979), Geometrical Optics theory (Wegmueller et al., 1995), and theb parameter approach (Wigneron et al.,
1995). All these models relateτveg primarily toVWC, but have different sensitivities. The choice of vegetation
model will have influence on the quantitative difference between the two vegetation databases.

5.2 Results

To test the sensitivity of CMEM to the vegetation input, we look at the difference in the modelled∆TBtoa when
the vegetation database is changed from ECOCLIMAP to TESSEL. Figure13 shows the∆TBtoa for the first
day of every month in 2005.

The differences mainly vary between +10 and -10 K, but some regions show a much higher permanent differ-
ence (see for example in South America, South Africa). In thenorthern hemisphere, the ECOCLIMAP values
are up to 20 K lower in the winter and up to 10 K higher in the summer. This annual cycle can be fully attributed
to the annual cycle in the LAI and crop cover in ECOCLIMAP. Themicrowave emission is highly sensitive
to vegetation water content that changes with LAI for low vegetation. The difference will therefore change
through the year as the LAI changes in ECOCLIMAP and stays constant in TESSEL.

When these monthly figures are averaged over the year theδTBtoa is somewhat lower but still very significant
(see Figure14). The differences due to changing LAI are removed, but the regions with a permanently high
difference are not affected. Maximum differences can reach20 K. For example, ECOCLIMAP has much
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higher cover fractions of high vegetation then TESSEL in Portugal, New Zealand and parts of Siberia leading to
∆TBtoa of +15K. On the other hand ECOCLIMAP has much lower high vegetation coverage in Ireland and the
Southern coast of West-Africa which results in∆TBtoa of �20K. On the whole, ECOCLIMAP underestimates
TBtoa by -4 K relative to TESSEL.

This strong vegetation effect can be explained by the high sensitivity of the vegetation models to theVWCof
low vegetation water content (Figure16). According to the Kirdiashev model, a change of 1kg=cm3 in vege-
tation water content results in 5 K difference in brightnesstemperature. For the Wigneron model in its current
configuration this effect would be double as strong. Besidesdifferent estimates of LAI for low vegetation, the
difference in cover of low vegetation, high vegetation and bare soil will make differences in tile averagedVWC
of several LAI points very likely. Figure15 shows the difference inVWCfor December.

5.3 Conclusion

This study of the effect of changing the vegetation input database shows that the representation of vegetation
in the radiative transfer model is a first order effect with differences in L-band brightness temperatures of 5-10
%. It clearly shows that using a static vegetation database to represent the vegetation layer in an emission
model places large presumptions on the interpretation of observed brightness temperatures. This means that
if the amount of vegetation is overestimated in the vegetation database, the emission model will have to be
calibrated to underestimate the effect of vegetation on brightness temperatures, and vice versa. This will make
the calibrated model higly linked to the vegetation database that is used. Changing the database will need to be
followed by recalibrating the model.

Another result of a predefined vegetation database is that all deviations in actual vegetation will be recorded
in the soil moisture variable. For example, if in a certain region spring comes exceptionally late, the vege-
tation database will overestimate the vegetation comparedto the the actual vegetation. The model will then
underestimate the effect of soil moisture and the retrievedsoil moisture value will then be too high.
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(a) January (b) February

(c) March (d) April

(e) May (f) June

(g) July (h) August

(i) September (j) October

(k) November (l) December

Figure 13: Brightness temperature [H], vegetation ECOCLIMAP - ECMWF
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(a) Wigneron (A) Avg 3 9K

(b) Kirdyashev (E) Avg 4 0K

Figure 14: Mean difference in TB H f 1 4GHz , ECOCLIMAP - TESSEL, for day 1 of every month of 2005. The vegetation
model is a) Wigneron; b) Kirdyashev.

Figure 15: Mean difference in VWC, ECOCLIMAP - TESSEL, for December.
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(c) Wegmueller

Figure 16: Sensitivity to VWC for the three vegetation models at L-band. Solid lines show the TBtov for VSM= 0:05and
dashed lines for VSM= 0:40. The roughness height h is modelled following the Q/h(VSM) model (Wigneron et al., 2001)
with anσ of 2.2 cm. At low moisture values, the three models are relatively insensitive to vegetation, but at high moisture
the difference between TBsoil and TBveg increases making them very sensitive to VWC. Wigneron’s vegetation model is in
this configuration the most sensitive and saturates at lowest VWC value.

6 Sensitivity analysis using an Ensemble Prediction System

The atmosphere is a complex dynamical system with many degrees of freedom. In numerical weather predic-
tion (NWP), the state of the atmosphere is described by the spatial distribution of wind, temperature, specific
humidity, liquid water content and surface pressure. The mathematical differential equations used to predict the
system time evolution include Newton’s laws of motion and the laws of thermodynamics. Numerical weather
prediction models predict the time evolution of the atmospheric state by solving numerically the system equa-
tions.

A deterministic forecast is a single integration of the system equations. The practical usefulness of a single
deterministic weather forecast is limited by the day-to-day variability in its accuracy. This variability is partly
associated with fluctuations in the predictability of the atmospheric flow, with predictable states (i.e. flows
characterized by a slow amplification of initial errors) alternated by unpredictable states (i.e. flows characterized
by a fast amplification of initial errors).

Ensemble systems are practical tools designed to assess thepredictability of the daily atmospheric flow (ref:
Encyclopedia of Atmospheric Sciences, Academic Press, 2002, in press). More generally, they can be used to
predict the time evolution of the probability density function (PDF) of forecast states. Ensemble systems should
be designed to simulate the effect of all sources of forecasterrors. In particular, they should simulate the effect
of uncertainties in the knowledge of the initial state of thesystem and the effects of the approximations made
in numerical weather prediction models.

6.1 Materials and Methods

The ECMWF Ensemble Prediction System (EPS) is one of the mostsuccessful global ensemble prediction
systems run on a daily basis?. In this study, we look at the 48 hour forecast of ECMWF TL159C31 EPS with
50 perturbed members (Buizz et al. 1998). After 48 hours, thesurface state in the 50 members will exhibit
a low variance in areas with high predictability and a high variance in areas where the predictability is low.
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Hereunder, the variance in soil moisture after 48 hours willbe used as an indicator of the uncertainty in the
initial conditions for deterministic weather forecasting.

In order to identify the regions with highest potential for assimilation of satellite derived soil moisture we
use CMEM to model the top-of-atmosphere L-band brightness temperature (TBtoa) based on the 48 hours
prediction for each of the 50 members of the EPS. This is done for day 1 and 15 of every month of 2005 to get
a representive average of the weather conditions. At a specific location, a high variance in soil moisture and or
temperature will result in a high variance inTBtoa if the model is sensitive to the surface state at that location.
The most important factor that has a negative effect on the soil moisture sensitivity of the model at a certain
location is the presence of vegetation. Vegetation can already saturate the microwave emissivity atVWclevels
of 3 to 4kg=cm3 (recall Figure16). Another factor can be a high percentage of open water in a grid box which
will decreases the dynamic range in emissivities. Factors that can increase the sensitivity of the model relative
to the variance in soil moisture and temperature are temperatures around the freezing point and intermittent
snow events.

Taken together, the variance inTBtoa as based on the 50 members of the EPS will thus be a qualitativeindicator
of regions where both the uncertainty in initial conditionsis high and the sensitivity of a satellite-borne L-band
radiometer to soil moisture will be high. Figure17 shows the variance in predictedTBtoa on the left, and the
variance inVSM on the right, for the first day of every month of 2005. This shows that for most regions, a
high variance in soil moisture will result in a high variancein TBtoa, see for example Australia in January. In
other regions (e.g. the Amazon, central Africa.) a variancein soil moisture has little effect on the predicted
TBtoa. The different sensitivity to soil moisture can in this casebe explained by a different vegetation density.
The effect of open water in a grid box is difficult to separate from that of vegetation density because they often
occur together. Relatively high variances inTBtoa as compared to the variance inVSMcan be seen in northern
latitudes, see for example Canada in November and December.This can likely be attributed to temperatures
around the freezing point and snow cover.

6.2 Results and Conclusion

The average of the 24 variance maps is shown in Figure19 for TBtoa;H (top figure) andVSM(bottom figure).
The map of the average variance inVSMis very evenly filled with a variance of 1-2 % (except for deserts) and
shows that the sample size is big enough to reduce the impact of one-time events. The map of the variance in
TBtoa;H shows now clearly the regions where both the initial conditions in NWP are the most uncertain and L-
band microwave data have a high sensitivity to soil moisture. According to this map these regions are between
30 and 60 degrees Northing in both America and Eurasia, in Australia, South Africa and the southern tip of
South America

This study gives valuable information on potential use for satellite measurements of L-band microwave emis-
sion. It identifies regions where a high sensitivity of L-band emission to soil moisture combines with uncertainty
in initial conditions in numerical weather prediction. Figure20 shows a scatter plot of variance inVSMversus
TBtoa, with hypothetical regressions for dense forest (0:2K=%), low vegetation (1K=%) and bare soil (2K=%).
Further studies should test these hypothesis and seek to isolate different biomes and their potential for passive
microwave remote sensing. Also, the effect of frozen soil and snow should be separated from the analysis
because theTBtoa is not likely to give good information.
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(a) TBH January (b) VSM January

(c) TBH February (d) VSM February

(e) TBH March (f) VSM March

(g) TBH April (h) VSM April

(i) TBH May (j) VSM May

(k) TBH June (l) VSM June

Figure 17: Variance in Tb[H] (left panel) and VSM (right panel) of day 1 for first six months of 2005 at 12PM.
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(a) TBH July (b) VSM July

(c) TBH August (d) VSM August

(e) TBH September (f) VSM September

(g) TBH October (h) VSM October

(i) TBH November (j) VSM November

(k) TBH December (l) VSM December

Figure 18: Variance in TB H (left) and VSM (right) of day 1 for second half of 2005 at 12PM.
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(a) Tb H

(b) VSM

Figure 19: Mean of the variances in Tb H and VSM of day 1 and 15 for every month of 2005 at 12PM.
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Figure 20: Standard deviation in VWC against Standard deviation in Tb H for January.
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7 Future work

7.1 Calibration on RTTOV surface emissivities

The Radiative Transfer for TOV (RTTOV) is used by the ECMWF toassimilate passive infrared and microwave
radiances from satellites in the numerical weather prediction model. Using an advanced atmospheric model,
the emissivity of the single layer soil-vegetation surfacecan be derived. A model like CMEM makes it possible
to compare the observed emissivities to the predicted emissivities according to a soil model consistent with
the ECMWF surface fields. Theoretically, the observed emissivity from RTTOV eo compares to the modelled
CMEM emissivityem in the following way:

TB= TBau+Tskin�eo �exp(�τa)+TBad � (1�eo) �exp(�τa) (14)

eo = ((TB�TBau)=exp(�τa)�TBad)=(Tskin�TBad) (15)

Because RTTOV treats the land and vegetation as a single layer, theeo can not simply be related to the modelled
TBtov because theTBad gets attenuated twice by the vegetation. Therefore theTBtov as calculated from CMEM
without atmosphere can be compare toeo in the following way:

eo = TBtov

Tskin

� TBad � (1�exp(�2τveg))
Tskin

(16)

Correcting forTBad needs a slightly more complicated approach. For a first estimate we will look at C- and
X-band data of AMSR-E where the effect ofTBad will be less then 1%.

7.2 Open issues� Global distribution of roughness effects;� Calibrate the effective temperature models on the Wilheit model, average over different months;� Water tile has constant salinity of 32:5psu for oceans and great lakes (LSM¿0.5) else 0:0psu for fresh
water. For coasts, water in sea and water in lakes have the same salinity. Lake Cover (CL 26) is not
archived in MARS;� Water interception by canopy is not included in the model. Make it possible to flag the data or include it
in low vegetation water content as in L-MEB.� Amount of frozen water in soil is poorly defined. (frostfrac in soil module); Pellarin uses=tau threshold
for different vegetation densities� Snow module, Water content snow as input field and snow cover as function of snow depth;
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