
 1. Compiling RTTOV9

 1.1. Creating a Makefile

The creation of a Makefile for compiling RTTOV is automated. The Makefile is created by a script
which analyses the dependencies between RTTOV source units. These dependencies are of two
kinds:

� Module dependency: file a.F90 contains a use b statement. Hence if module b is
recompiled then unit a.F90 has to be recompiled.

� Interface dependency: file a.F90 includes b.interface. If the interface of b changes then
it is necessary to recompile a.F90.

To create the Makefile, change to the subdirectory src of the RTTOV distribution and type:

$../build/Makefile.PL

Note that this script has to be run every time dependencies change. Adding a new subroutine or a
new program in RTTOV src/ directory implies running the script again, and so does adding a use
statement or including an interface. Not updating the Makefile may lead to create spurious
executable code.

 1.2. Compiling for a specific architecture

Compiling RTTOV requires identifying the target machine; the directory build/arch contains a
list of architectures which have been tested by the project team. Choose the one which appears the
most appropriate for your machine.
Change to the src directory of your RTTOV distribution, and type:

$ make ARCH=myarch

This will build RTTOV for the myarch architecture; object files will be kept in the obj/
subdirectory of your RTTOV distribution, modules files in mod/, executables in bin/, and
interfaces in include/. Note that the creation of these interface files are part of the building
process (see section « Interface files »).

It is possible to specify a target directory to install RTTOV; this is very useful when compiling
RTTOV with different flags or a different compiler on the same machine:

$ make ARCH=myarch BLDDIR=../mydir

The command above, when issued from the src/ directory will install the obj/, bin/, include/
and mod/ directories in the mydir/ directory in your RTTOV distribution. Note that the following
restriction currently holds: the mydir directory has to be located in the RTTOV distribution main
directory; but once it is compiled and tested, you are free to move it where you like.

When you compile RTTOV for a specific architecture, a tmp-myarch is created in the RTTOV top
directory; this makes possible to compile RTTOV in parallel (for different architectures) and to
keep the listings issued by some compilers.

Some other targets exist in the Makefile:

� clean : removes all object files, libraries, executables, module files and interfaces created
by the Makefile.

� dist : typing « make ARCH=myarch dist » will create a gzipped tarball of RTTOV source
and test definition directories.

 1.3. Interface files
Interface files are created automatically from the source code by the script build/mkintf.pl.
Given a Fortran unit a.F90 this script extracts the source code from a.F90 up to the !INTF marker
which shall appear in every Fortran unit which requires an interface (namely subroutines and
functions). Hence a Fortran unit which needs an interface to be extracted shall be written as
follows:

Subroutine a(x1, x2, x3,)
! use statements go here
Use m1
Use m2
! argument declarations go here
Real :: x1
Real :: x2
Real :: x3
...
!INTF

Note the !INTF mark at the end of arguments declaration.

The interface file is created when needed (that is, when the make executable request them); this
implies that unreferenced interface files are never created. But you can create the interface of a.F90
by typing:

$../build/mkintf.pl a.F90 a.interface

Note also that modifying a.F90 does not imply that a.interface will be created again. It will
actually be created only if it different from the one which already exists; this is to avoid
unnecessary recompilation of the code.

 1.4. Creating an architecture configuration file

If your architecture is not included in the build/arch directory bundled with RTTOV (or maybe
you would like to customize the installation of RTTOV), it is possible to create your own
configuration file.
This configuration file shall be installed in the build/arch directory and define the following
macros:

� FC : the name of your Fortran 90 compiler.
� FC77 : the name of your Fortran 77 compiler; this might be your Fortran 90 compiler with

possibly some special options.
� LDFLAGS_ARCH : specific flags to pass to the linker.
� FFLAGS_ARCH : specific flags for your Fortran compiler.
� AR : the command to create a library from object files.

This configuration file may define the following macros:

� FFLAG_MOD : this is the flag used by your Fortran 90 compiler to locate module files; it
defaults to -I, but you can override this setting.

� CPP : the name of your pre-processor; defaults to cpp.
� Specific flags for some RTTOV units; defining FFLAGS_ARCH_a will force the build system

to compile unit a.F90 with these specific flags.
We reproduce below the content of the configuration file for the NEC-SX F90 compiler with
optimization:

FC=sxf90
FC77=sxf90
LDFLAGS_ARCH=

FFLAGS_HOPT= -Chopt
FFLAGS_SAFE= -Cvsafe
FFLAGS_NEC = -Wf,-pvctl loopcnt=200000 -Wf,-pvctl nomsg -Wf,-O nomove,-O nomsg -
DRTTOV_ARCH_VECTOR

FFLAGS_ARCH= $(FFLAGS_HOPT) $(FFLAGS_NEC)
FFLAGS_ARCH_rttov_alloc_prof = $(FFLAGS_SAFE) $(FFLAGS_NEC)
FFLAGS_ARCH_rttov_alloc_predictor = $(FFLAGS_SAFE) $(FFLAGS_NEC)
FFLAGS_ARCH_rttov_tl = $(FFLAGS_SAFE) $(FFLAGS_NEC)
FFLAGS_ARCH_rttov_ad = $(FFLAGS_SAFE) $(FFLAGS_NEC)
AR=sxar rv

The previous configuration file shows that the Fortran 90 compiler on this platform is sxf90, the
archive creation command is sxar rv, and that some files require that optimization be disabled (
namely rttov_alloc_prof.F90, rttov_alloc_predictor.F90, rttov_tl.F90,
rttov_ad.F90).

