RTTOV-6 - TECHNICAL DESCRIPTION

1. GENERAL REMARKS

The purpose of this report is to document the technical aspects of RTTOV-6. Scientific and validation documentation can be found in the RTTOV-6 scientific and validation report. The model is available in both Fortran 77 and Fortran 90 versions and an installation guide is available for users to install RTTOV-6 on their own system and test it out. The code is available from ECMWF data services via ftp (for a compressed UNIX tar file of the F90 or F77code) or on 2 floppy disks for the F77 code. The main features of RTTOV-6 are:

- RTTOV-6 is the latest version of a fast radiative transfer model which has been under development since 1990. It computes top of atmosphere radiances and equivalent black body brightness temperatures for satellite infrared and microwave radiometers given an input atmospheric profile of temperature, water vapour and optionally ozone and cloud liquid water. It also outputs intermediate products of the RT calculations in addition (e.g. surface to space transmittances, transmittance profiles, cloudy radiance from each layer, surface emissivity, etc).
- It supports many different satellite radiance observations as defined in the Annex with the same model but using different RT coefficient files as input. A single documented ASCII RT coefficient file is used as input for each satellite series type. This facilitates export of the code and makes it clear what values are used. The code does however accept a binary input for operational purposes where I/O is an important consideration.
- It allows a different surface emissivity to be input for each radiometer channel and if the input is set to zero values are computed internally in the model and returned in the output. For infrared channels the ISEM-6 model (Sherlock, 1999) is used and for microwave channels over the ocean the FASTEM model (English and Hewison, 1998) is used.
- A check is applied on the input profile variables to make sure they are within sensible limits of the regression used to compute the coefficients. If they are outside the defined limits but still physically reasonable a calculation will still be performed but a flag is returned in the range (10-19). If the profile is not physically reasonable RTTOV-6 will return with an error flag >20 set *but still attempt a computation*.

2. CHANGES FROM RTTOV-5

The scientific changes are outlined in more detail in the scientific and validation report but for completeness a list of changes from the previous version of RTTOV (RTTOV-5) are given here together with the technical changes:

- Activation of cloud liquid water concentration profile to optionally affect microwave channel transmittances.
- Addition of infrared surface emissivity model for ocean and more realistic constant values specified for land.
- Modification to water vapour transmittance calculation for AMSU-B water vapour channels (AMSU channels 18-20) to give much improved accuracy in computed radiances.
- Error in GENLN2 transmittance reference profile corrected which has removed spikes in infrared Jacobians for the upper levels.
- The Liebe microwave model transmittances have been computed on a finer spectral grid which has improved the computation of some of the AMSU-A upper level sounding channels.
- Addition of coefficients for SSM/I, TMI, AVHRR and GOES imager + measured filters now used for SEVIRI simulations.
- Revision of soft profile limits to be wider as regressions still work well beyond limits. This will reduce number
 of error flags returned.
- Addition of unit number variable for reading coefficient file to *RTTVI* input variables.
- More optimisation of code for running on supercomputers.

3. DOCUMENTATION OF RTTOV-6 CODE STRUCTURE

RTTOV-6 consists of a setup routine and 4 associated models:

RTTVI routine to set up arrays for RTTOV

RTTOV the radiative transfer model itself, *RTTOVTL* its tangent linear model, *RTTOVAD* its adjoint model and *RTTOVK* its gradient matrix model.

If you are only interested in the forward model and not the gradient routines then the TL/K/AD routines are not required which significantly reduces the number of routines you need.

Firstly *RTTVI* must be called to set up the necessary arrays for the satellite series required (i.e. NOAA, METEOSAT, DMSP, GOES, AVHRR) and the satellite ids for each series (as defined in Tables 1 and 2 of Annex). The *cparam.h* include file defines the array sizes for running RTTOV-6. It is recommended the user modifies this file to set the array size for his particular application. The variables in the file are defined in Table 1. If the rt_coefficient file supplied is used then only those variables in *italics* should be modified. JPNSAT refers to the maximum number of satellites of all series to be used at any one time, JPPF to the maximum number of profiles to be processed in any one call to RTTOV and JPCHUS to the maximum number of channels required to be simulated by RTTOV.

PARAMETER (JPNOAA=11)	! MAX NO. OF NOAA AVHRR SATS IN COEF FILE
PARAMETER (JPTOVS=15)	! MAX NO. OF NOAA TOVS/ATOVS SATS IN COEF FILE
PARAMETER (JPDMSP= 9)	! MAX NO. OF DMSP SATS IN COEF FILE
PARAMETER (JPMET = 4)	! MAX NO. OF METEOSAT SATS IN COEF FILE
PARAMETER (JPGOES= 5)	! MAX NO. OF GOES SATS IN COEF FILE
PARAMETER (JPNSAT=12)	! MAX NO. OF SATELLITES TO BE USED
PARAMETER (JPLEV=43)	! NO. OF PRESSURE LEVELS IN PROFILE
PARAMETER (JPNAV=4)	! NO. OF PROFILE VARIABLES IN PROFILE
PARAMETER (JPNSAV=5)	! NO. OF SURFACE AIR VARIABLES
PARAMETER (JPNSSV=1)	! NO. OF SKIN VARIABLES
PARAMETER (JPNCV=2)	! NO. OF CLOUD VARIABLES
PARAMETER (JPPF=1) ‡	! MAX NO. PROFILES FOR EACH RTTOV CALL
PARAMETER (JPCH=47)	! MAX. NO. OF CHANNELS IN PARAM FILE
PARAMETER (JPHIR=20)	! MAX. NO. OF HIRS CHANNELS IN PARAM FILE
PARAMETER (JPMSU=4)	! MAX. NO. OF MSU CHANNELS IN PARAM FILE
PARAMETER (JPAMSU=20)	! MAX. NO. OF AMSU CHANNELS IN PARAM FILE
PARAMETER (JPSSU=3)	! MAX. NO. OF SSU CHANNELS IN PARAM FILE
PARAMETER (JPVTPR=16)	! MAX NO. OF VTPR CHANNELS IN PARAM FILE
PARAMETER (JPSSMI=7)	! MAX NO. OF SSM/I CHANNELS IN PARAM FILE
PARAMETER (JPAVHRR = 3)	! MAX NO. OF AVHRR CHANNELS IN PARAM FILE
PARAMETER (JPGOESIM = 4)	! MAX NO. OF GOES IMAGER CHANNELS IN PARAM FILE
PARAMETER (JPCHUS=39)	! MAX. NO. OF CHANNELS REQ'D FOR COMPUTATION
PARAMETER (JPCHPF=JPPF*JPCHUS)	! MAX NO. OF PROFS * CHANS REQUIRED
PARAMETER (JPCOFM=10)	! MIXED GAS COEFFS (MAX)
PARAMETER (JPCOFW=10)	! WATER VAPOUR COEFFS (MAX)
PARAMETER (JPCOFO=10)	! OZONE COEFFS (MAX)
PARAMETER (JMWCLDTOP = 25)	! UPPER LEVEL FOR LWP CALC
PARAMETER (JPST=10)	! MAX NO. OF SURFACE TYPES

‡ (set to 1 for scalar machine, and to ~50 for a vector machine for optimal performance)

Table 1. RTTOV-6 include file cparam.h

RTTVI sets up the arrays and loads in all the constants from the rt_coefficient file(s) and is only called once for all satellites. **RTTOV** actually performs the RT calculation for the specified satellite ids and channel numbers given valid profile arrays. The subroutine calling structure for **RTTVI** and **RTTOV** is shown in Figures 1 and 2. For users who require the tangent-linear, adjoint or K routines of RTTOV-6 the calls are **RTTOVTL**, **RTTOVAD** and **RTTOVK** respectively with the same subroutines called inside with the endings TL, AD, K. The details of the calling interfaces are given in section 4.

4 DOCUMENTATION OF RTTOV-6 INTERFACES

4.1 RTTVI Interface

The only change to the RTTVI interface is an additional integer parameter, KIU1, to specify the unit number through which to read the rt_coef files. If set to zero a unit number of 10 is assumed (as for RTTOV-5).

CALL RTTVI(IERR, KPPF, KPNSAT, KPLEV, KPCH, KPCHUS, KPNAV, KPNSAV, KPNSSV, KPNCV, NSERIES, NSATID, NSUBTYPE, KSERIES, KSATID, KSUBTYPE, MAXSERIES, MAXSATID, MAXSUBTYPE, PRESLEV, OTMIN, OTMAX, OQMIN, OQMAX, OOZMIN, OOZMAX, **KIU1**)

RTTVI is called only once for more than one satellite series; tovcf.F, eumcf.F, ssmcf.F etc. are called from RTTVI as required.

Arguments:

Input:

KSATID(MAXSERIES,MAXSATID) KSUBTYPE(MAXSERIES,MAXSUBTYPE) MAXSERIES MAXSATID MAXSUBTYPE KIU1	- LIST OF REQUESTED SERIES
Output:	
IERR KPPF KPNSAT KPLEV KPCH KPCHUS KPNAV KPNSAV KPNSSV KPNCV PRESLEV OTMIN(JPLEV) OQMIN(JPLEV) OQMIN(JPLEV) OQMIN(JPLEV)	 ERROR FLAG, RETURNS IERR /= 0 IF ERROR MAX NUMBER PROFILES PROCESSED IN PARALLEL MAX NUMBER OF SATELLITES NUMBER OF RT LEVELS MAX NUMBER. OF CHANNELS MAX NO OF PROFILE VARIABLES MAX NO OF SURFACE VARIABLES MAX NO OF SKIN VARIABLES MAX NO OF CLOUD VARIABLES KPLEV PRESSURE LEVELS FOR RT CALCULATIONS MIN TEMP PROFILE ARRAY MAX TEMP PROFILE ARRAY MIN SPECIFIC HUMIDITY PROFILE ARRAY MAX SPECIFIC HUMIDITY PROFILE ARRAY MIN OZONE PROFILE ARRAY
OOZMAX(JPLEV) IVCH(KPCH,KPNSAT)	MAX OZONE PROFILE ARRAYARRAY PER SATELLITE OF VALID CHANNEL NUMBERS

Notes

Series numbers have been arbitrarily assigned as:

(A) TOVS = 1 TMI&SSM/I = 2 METEOSAT/MSG = 3 GOES = 4 AVHRR = 5 Satellite identifiers are defined in the Annex. Satellite instrument sub-types are always set to 1 at present as the parameter is not used but may be used later to discriminate between different radiance types (e.g. 1b or preprocessed radiances):

(A)TOVS= 1 MVIRI=1 SEVIRI=1 SSM/I=1 etc

4.2 RTTOV interface

There is no change to the interface to the RTTOV subroutine although the surface type of 2 in KSURF is now activated as sea-ice for the infrared emissivity model:

CALL RTTOV(KNPF, KLENPF, KNAV, KNSAV, KNSSV, KNCV, PPRES, PANGL, PANGA, PANGS, PANGSA, PGRODY, KSURF, KSAT, KNCHPF, KCHAN, KPROF, PAV, PSAV, PSSV, PCV, PEMIS, IFAIL, PRAD, PTB, PRDOV, PRDO, PTAU, PTAUSF)

The terms "constant" and "variable" are employed here in the sense used in variational analysis, i.e. an input variable is a parameter with respect to which a gradient will be calculated in the associated tangent linear (TL) and adjoint (AD) routines.

Input constants		
KNPF	numbe	r of profiles(no restriction affects memory
	requi	rements)
KLENPF	lengt	h of atmospheric profile vectors
KNAV	numbe	r of atmospheric profile variables
KNSAV	numbe	r of surface air variables
KNSSV	numbe	r of surface skin variables
KNCV	numbe	r of cloud variables
PPRES(KLENPF)	press	ure levels (hPa) of atmospheric profile vectors
PANGL (KNPF)	satel	lite local zenith angle (deg)
PANGA (KNPF)	satel	lite local azimuth angle (deg)
PANGS (KNPF)	solar	zenith angle at surface (deg)
PANGSA(KNPF)	relat	ive satellite solar azimuth angle.
PGRODY(6,KNPF)	grody	type microwave emissivity coeffs
KSURF (KNPF)	surfa	ce type index (0=land, 1=sea, 2=sea-ice)
KSAT	satel	lite index (see RTTVI)
KNCHPF	numbe	r of output radiances (= channels used * profiles)
KCHAN (KNCHPF)	chann	el indices (for output vectors)
KPROF (KNCHPF)	profi	le indices (for output vectors)
Input variables PAV(KLENPF, KNAV, K PSAV(KNSAV, KNPF) PSSV(KNSSV, KNPF) PCV(KNCV, KNPF)	NPF)	atmospheric profile variables (see Table 2) surface air variables (see Table 2) surface skin variables (see Table 2) cloud variables (see Table 2)
Input/output variable PEMIS(KNCHPF, KNPF		surface emissivity for each channel. If set to zero on input for infrared or microwave channels the ISEM-6/FASTEM model is used (over sea) and the computed values returned as output (see table 3).
Output constants IFAIL(KNPF, JPNSAT	')	return flag (0=OK,10-19=outside profile limits, >20=unphysical profile) See Table 4.
Output variables PRAD(KNCHPF)		radiances (mW/cm-1/ster/sq.m)

PTB(KNCHPF)brightness temperatures (degK)PRDOV(KNCHPF,KLENPF)overcast radiance at each level in mW/m²/sr/cm² PRDO(KNCHPF)overcast radiance at cloud top in mW/m²/sr/cm¹PTAU(KNCHPF,KLENPF)transmittance from each standard pressure levelPTAUSF(KNCHPF)transmittance from surface

Position in vector/element	Profile Array Contents	Units
1 to NLEV/1	Temperature profile	degK
1 to NLEV/2	Water vapour profile	Kg/Kg
1 to NLEV/3	Ozone profile ‡	Kg/Kg
1 to NLEV/4	Liquid water concentration profile (optional)	Kg/Kg
Position in vector	Surface Array Contents	Units
1	Surface 2m temperature	degK
2	Surface 2m water vapour	Kg/Kg
3	Surface pressure	hPa
4	2 m vector wind speed u	m.s⁻¹
5	2 m vector wind speed v	m.s⁻¹
Position in vector	Surface Skin Array Contents	Units
1	Radiative skin temperature	degK
Position in vector	Cloud Array Contents	Units
1	Cloud top pressure	hPa
2	Cloud fractional cover	0-1
Position in vector	Surface Emissivity Array Contents	Units
1 to NCHAN	Surface emissivity (if set to zero provide default value as defined in Table 3)	0-1

‡ If unavailable initialise to reference ozone profile in rt_coef file.

Table 2. Profile vectors for model. NLEV is the number of profile levels and NCHAN the number of channels. All the arrays have another dimension for profile number to allow vectorising of the code.

Input •∈	Forward Output $\bullet \epsilon$	Tangent Linear Output $\partial \cdot \epsilon$	
	INFRARED		
0	Land=0.98/sea-ice=0.99/sea= • ϵ_{ISEM}	$\partial \bullet \epsilon$ about 0.98/0.99 $\epsilon \bullet_{\text{ISEM}}$	
Non-zero	as input	∂•∈ about • input	
	MICROWAVE		
		Land/sea-ice $\partial \bullet \in$ about 0.9	
0	Land/sea-ice= 0.9 /sea= • _{FASTEM}	sea $\partial \cdot \epsilon$ computed from	
		$\partial u, \partial v, \partial sst about \bullet_{FASTEM}$	
Non-zero	as input	$\partial \bullet \epsilon$ about • input	

Table 3. Output values of $\bullet \epsilon$ and $\partial \bullet \epsilon$ arrays for infrared and microwave channels for forward and gradient routines

IFAIL value	Meaning		
0	Profile OK		
11	Temp profile outside limits		
12	Water vapour profile outside limits		
13	Ozone profile outside limits		
14	Surface temp outside limits		
15	Surface water vapour outside limits		
16	Surface wind speed outside limits		
20	Input pressure levels do not match coef file		
21	Temperature profile unphysical		
22	Water vapour profile unphysical		
23	Ozone profile unphysical		
24	Surface temperature unphysical		
25	Surface water vapour unphysical		
26	Surface wind unphysical		
27	Surface pressure unphysical		

Table 4. Values for IFAIL flag from RTTOV

5. RTTOV-6 COEFFICIENT FILES

The RT coefficient files contain all the coefficients required by RTTOV specific to a particular instrument and satellite. They also define some of the fundamental constant values from which the coefficients are computed to ensure consistency throughout. There is currently a different coefficient file for each satellite series as defined in 4.1 and the Annex. These (or a symbolic link to these) need to reside in the same directory as the executable file of RTTOV (see installation guide). The file names are the same as for RTTOV-5. An option exists to read binary versions of the coefficient files and is invoked by placing a file (or symbolic link) called rt_coef_ieee.dat in the same directory (for (A)TOVS). These binary files have to be produced on the target machine and so cannot be supplied. Code to write them is available on request from the NWP-SAF. This aspect of the code has only been tested for ATOVS.

For (A)TOVS the default option for the export package is to provide only the coefficients for NOAA-11 to NOAA-15. A bigger file containing coefficients for all the NOAA satellites is available on request. The METEOSAT coefficient file now contains coefficients computed using the measured SEVIRI filter response functions. Coefficient files for SSM/I and TMI, AVHRR and GOES imager are only available for RTTOV-6.

Note that RTTOV-5 coefficient files can be used with the RTTOV-6 code and should give results very similar to the RTTOV-5 code but as shown in the validation report it is believed the RTTOV-6 radiances are more accurate. RTTOV-6 coefficient files cannot be read by the RTTOV-5 code.

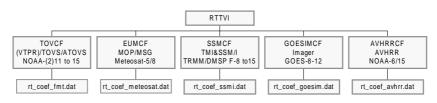
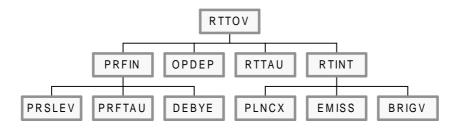



Figure 1. Subroutine tree for RTTOV-6 setup call

Figure 2. Subroutine tree for RTTOV-6 main call

6. REFERENCES

English S.J. and T.J. Hewison 1998 A fast generic millimetre wave emissivity model. *Microwave Remote* Sensing of the Atmosphere and Environment Proc. SPIE **3503** 22-30

Sherlock, V. 1999 ISEM-6: Infrared Surface Emissivity Model for RTTOV-6. NWP SAF report.

ANNEX: RTTOV-6 sensors

Table 1. RTTOV-6 (A)TOVS coefficients available in file: rt_coef_fmt.dat					
Platform	Rttov	Sensors			Valid Channel
	Sat id				Numbers [‡]
NOAA-2	1	VTPR			1-8
NOAA-3	2	VTPR			1-8
NOAA-4	3	VTPR			1-8
NOAA-5	4	VTPR			1-8
TIROS-N	5	HIRS/2	MSU	SSU	1-20,21-24,25-27
NOAA-6	6	HIRS/2	MSU	SSU	1-20,21-24,25-27
NOAA-7	7	HIRS/2	MSU	SSU	1-20,21-24,25-27
NOAA-8	8	HIRS/2	MSU	SSU	1-20,21-24,25-27
NOAA-9	9	HIRS/2	MSU	SSU	1-20,21-24,25-27
NOAA-10	10	HIRS/2	MSU		1-20,21-24
NOAA-11	11	HIRS/2	MSU	SSU	1-20,21-24,25-27
NOAA-12	12	HIRS/2	MSU		1-20,21-24
NOAA-14	14	HIRS/2	MSU	SSU	1-20,21-24,25-27
NOAA-15	15	HIRS/3	AMSU-A	AMSU-B	1-20,28-42,43-47

Table 1. RTTOV-6 (A)TOVS coefficients available in file: rt_coef_fmt.dat

‡Definition of each channel number (in wavenumbers) is included in file

rt_coef_ssmi.dat				
Platform	RTTOV	Sensor	Channel	
(series=2)	sat id		numbers	
TRMM	7	TMI	1-9	
DMSP-F8/8	8	SSM/I	1-7	
DMSP-F9/9	9	SSM/I	1-7	
DMSP-F10/10	10	SSM/I	1-7	
DMSP-F11/11	11	SSM/I	1-7	
DMSP-F12/12	12	SSM/I	1-7	
DMSP-F13/13	13	SSM/I	1-7	
DMSP-F14/14	14	SSM/I	1-7	
DMSP-F15/15	15	SSM/I	1-7	
	rt_coef_m	eteosat.dat		
Platform	RTTOV	Sensor	Channel	
(series=3)	sat id		numbers	
METEOSAT-5	5	MVIRI	1-2	
METEOSAT-6	6	MVIRI	1-2	
METEOSAT-7	7	MVIRI	1-2	
METEOSAT-8	8	SEVIRI	1-8	
	rt_coef_	goes.dat		
Platform	RTTOV	Sensor	Channel	
(series=4)	sat id		numbers	
GOES-8	8	GOES-IMAGER	1-4	
GOES-9	9	GOES-IMAGER	1-4	
GOES-10	10	GOES-IMAGER	1-4	
GOES-11	11	GOES-IMAGER	1-4	
GOES-12	12	GOES-IMAGER	1-4	
		avhrr.dat		
Platform	RTTOV	Sensor	Channel	
(series=5)	sat id		numbers	
NOAA-6	6	AVHRR-1	1-2	
NOAA-7	7	AVHRR-2	1-3	
NOAA-8	8	AVHRR-1	1-2	
NOAA-9	9	AVHRR-2	1-3	
NOAA-10	10	AVHRR-1	1-2	
NOAA-11	11	AVHRR-2	1-3	
NOAA-12	12	AVHRR-1	1-2	
NOAA-14	14	AVHRR-2	1-3	
NOAA-15	15	AVHRR-3	1-3	

 Table 2. RTTOV-6 other RT coefficients available
