

NWP SAF

RTTOV v10 Performance Tests

James Hocking Met Office

Pascal Brunel MétéoFrance

This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement dated 1 December, 2006, between EUMETSAT and the Met Office, UK, by one or more partners within the NWP SAF. The partners in the NWP SAF are the Met Office, ECMWF, KNMI and Météo France.

Copyright 2010, EUMETSAT, All Rights Reserved.

	Change record										
Version	Date Author / changed by Remarks										
0.1	29/11/10	James Hocking	Original draft								
1.0	30/11/10	James Hocking	Added results from PB.								
1.1	09/12/10	James Hocking	Response to DRI comments								
1.2	13/01/11	James Hocking	Update cloud/aerosol test results after code improvements.								

This document describes the tests performed to compare the performance of RTTOV v10 with that of RTTOV v9.3.

Tests were performed on IBM, NEC and Intel architectures. Calculations were performed for AMSU-A (all channels) and IASI (183 channels). Runs were carried out both with and without interpolation, for one profile at a time and for several profiles at a time.

For AMSU-A, the FASTEM-3 surface emissivity model was used in RTTOV v9.3 while FASTEM-4 was used in RTTOV v10. (Note that the surface emissivity calculation takes a very small fraction of the total execution time so the use of different models does not compromise the comparison). The ISEM emissivity model was used for IASI.

Tests 1-16 used a 43/44-level clear-sky profile and 43/44-level, version 7 predictor coefficient files. Tests 17-24 used a 100/101-level input profile which included cloud and aerosol profiles, and 100/101-level version 9 predictor coefficient files.

Test	Platform	Sensor	Coefs	nchannels	nprofiles	Interp?	Model	
Number			pred/levels		per call	_		
1	noaa	amsua	v7, 43/44	15	1	N	direct	
2	noaa	amsua	v7, 43/44	15	50	N	direct	
3	noaa	amsua	v7, 43/44	15	1	Y	direct	
4	noaa	amsua	v7, 43/44	15	50	Y	direct	
5	noaa	amsua	v7, 43/44	15	1	N	direct/TL/AD/K	
6	noaa	amsua	v7, 43/44	15	50	N	direct/TL/AD/K	
7	noaa	amsua	v7, 43/44	15	1	Y	direct/TL/AD/K	
8	noaa	amsua	v7, 43/44	15	50	Y	direct/TL/AD/K	
9	metop	iasi	v7, 43/44	183	1	N	direct	
10	metop	iasi	v7, 43/44	183	50	N	direct	
11	metop	iasi	v7, 43/44	183	1	Y	direct	
12	metop	iasi	v7, 43/44	183	50	Y	direct	
13	metop	iasi	v7, 43/44	183	1	N	direct/TL/AD/K	
14	metop	iasi	v7, 43/44	183	50	N	direct/TL/AD/K	
15	metop	iasi	v7, 43/44	183	1	Y	direct/TL/AD/K	
16	metop	iasi	v7, 43/44	183	50	Y	direct/TL/AD/K	

The following table lists the clear-sky tests:

The following table lists the cloud and aerosol-affected tests:

Test Number	Platform	Sensor	Coefs pred/levels	nchannels	nprofiles per call	Interp?	Model	
17	metop	iasi	v9, 100/101	183	1	Ν	direct	
18	metop	iasi	v9, 100/101	183	20	Ν	direct	
19	metop	iasi	v9, 100/101	183	1	Y	direct	
20	metop	iasi	v9, 100/101	183	20	Y	direct	
21	metop	iasi	v9, 100/101	183	1	Ν	direct/TL/AD/K	
22	metop	iasi	v9, 100/101	183	20	Ν	direct/TL/AD/K	
23	metop	iasi	v9, 100/101	183	1	Y	direct/TL/AD/K	
24	metop	iasi	v9, 100/101	183	20	Y	direct/TL/AD/K	

NWP SAF

Each test was run for a large number of profiles. The total number of profiles processed in each test is given in the following tables:

Tests 1-16:

	Intel	IBM	NEC
AMSU-A direct only	100000 profiles	500000	N/A
AMSU-A direct/TL/AD/K	10000	50000	10000
IASI direct only	10000	50000	N/A
IASI direct/TL/AD/K	1000	5000	1000

Tests 17-24:

	Intel	IBM		
IASI	800 profiles	4000		
direct only	soo promes	4000		
IASI	100	400		
direct/TL/AD/K	100	400		

The timing results are shown in the table on the following page. Notes on results:

- All clear-sky tests were run using 44 level coefficient files (rather than the new 51 level files) to make the comparisons between v9 and v10 fair.
- The Intel gfortran and NEC timings were obtained with DrHook while the Intel ifort and IBM timings were taken from the RTTOV v10 test suite. DrHook timings should be more accurate, but the timings from the test suite nevertheless provide a useful indication for the purposes of comparison.
- For clear-sky simulations (Tests 1-16) RTTOV v10 generally runs as fast or faster than RTTOV v9.3. On the NEC one routine (rttov_integrate_ad) cannot currently be compiled with optimisations which reduces the performance of RTTOV v10 relative to RTTOV v9.3.
- For cloud and aerosol-affected simulations, the RTTOV v10 direct code is somewhat slower than RTTOV v9.3, in particular on the IBM. This is a known issue which will be addressed in the future.

The EUMETSAT Network of Satellite Application Facilities	NWP SAF
---	---------

RTTOV v10 Performance	Doc ID	: NWPSAF-MO-TV-019
Tests	Version Date	: 1.2 : 13/01/11

Test Number	Intel gfortran v9	Intel gfortran v10	Intel gfortran v10:v9	Intel ifort v9	Intel ifort v10	Intel ifort v10:v9	IBM v9	IBM v10	IBM v10:v9	NEC SX8 v9	NEC SX8 v10	NEC SX8 v10:v9	NEC SX9 v9	NEC SX9 v10	NEC SX9 v10:v9
1	-	-	-	72.50	65.45	90.28%	124.32	126.01	101.36%	-	-	-	-	-	-
2	-	-	-	67.86	57.45	84.66%	111.79	112.51	100.64%	-	-	-	-	-	-
3	-	-	-	77.24	69.92	90.52%	146.01	150.17	102.85%	-	-	-	-	-	-
4	-	-	-	70.95	61.98	87.36%	121.20	117.53	96.97%	-	-	-	-	-	-
5	36.87	27.91	75.70%	93.87	81.71	87.05%	128.49	126.69	98.60%	291.64	253.92	87.07%	556.34	369.20	66.36%
6	41.35	36.45	88.15%	90.67	78.20	86.25%	134.07	124.59	92.93%	37.73	38.91	103.13%	60.20	39.20	65.12%
7	42.56	36.48	85.71%	96.57	90.31	93.52%	160.97	163.50	101.57%	362.00	312.00	86.19%	666.00	470.80	70.69%
8	42.27	39.49	93.42%	91.56	84.67	92.47%	153.34	151.59	98.86%	61.97	55.33	89.29%	101.96	67.61	66.31%
9	-	-	-	83.03	72.71	87.57%	109.65	111.83	101.99%	-	-	-	-	-	-
10	-	-	-	83.66	72.45	86.60%	121.00	121.68	100.56%	-	-	-	-	-	-
11	-	-	-	86.79	76.87	88.57%	117.44	120.77	102.84%	-	-	-	-	-	-
12	-	-	-	86.85	76.52	88.11%	127.98	128.60	100.48%	-	-	-	-	-	-
13	51.63	47.61	92.21%	115.34	106.83	92.62%	150.43	145.13	96.48%	37.56	39.49	105.14%	60.79	52.56	86.46%
14	55.73	51.83	93.00%	118.90	109.46	92.06%	214.12	196.82	91.92%	14.21	19.02	133.85%	17.51	20.39	116.45%
15	50.31	51.14	101.65%	118.31	115.79	97.87%	178.95	172.04	96.14%	61.05	62.28	102.01%	101.97	87.74	86.04%
16	56.64	56.49	99.74%	121.62	118.22	97.20%	235.70	221.36	93.92%	34.70	36.88	106.28%	46.70	48.40	103.64%
17	-	-	-	90.40	81.44	90.09%	115.06	124.99	108.63%	-	-	-	-	-	-
18	-	-	-	89.89	83.85	93.28%	139.40	147.97	106.15%	-	-	-	-	-	-
19	-	-	-	90.27	82.54	91.44%	116.45	125.73	107.97%	-	-	-	-	-	-
20	-	-	-	91.41	84.33	92.25%	140.65	149.28	106.14%	-	-	-	-	-	-
21	-	-	-	178.43	159.34	89.30%	153.89	144.07	93.62%	-	-	-	-	-	-
22	-	-	-	179.71	162.11	90.21%	174.17	160.48	92.14%	-	-	-	-	-	-
23	-	-	-	179.11	162.47	90.71%	158.48	150.12	94.72%	-	-	-	-	-	-
24	-	-	-	181.84	164.26	90.33%	178.37	166.94	93.59%	-	-	-	-	-	-