

Associate Scientist mission report

Document NWPSAF-MO-VS-043

Version 1.0

4 July 2011

Development of the GPU-based RTTOV-7
IASI and AMSU Radiative Transfer Models

Bormin Huang, Jarno Mielikainen and Hung-Lung Allen Huang
Cooperative Institute for Meteorological Satellite Studies

Space Science and Engineering Center, University of Wisconsin-Madison
1225 W. Dayton Street, Madison, WI 53706, USA

Roger Saunders

Met Office, Fitz Roy Road, Exeter, Devon, EX1 3PB, UK

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 1

Development of the GPU-based RTTOV-7 IASI and AMSU
Radiative Transfer Models

Bormin Huang, Jarno Mielikainen, and Hung-Lung Allen Huang
Cooperative Institute for Meteorological Satellite Studies

Space Science and Engineering Center, University of Wisconsin-Madison
1225 W. Dayton Street, Madison, WI 53706, USA

Roger Saunders

Met Office, Fitz Roy Road, Exeter, Devon, EX1 3PB, UK

This documentation was developed within the context of the EUMETSAT Satellite
Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation
Agreement dated 1 December, 2006, between EUMETSAT and the Met Office, UK, by
one or more partners within the NWP SAF. The partners in the NWP SAF are the Met
Office, ECMWF, KNMI and Météo France.

Copyright 2011, EUMETSAT, All Rights Reserved.

Change record
Version Date Author / changed by Remarks
0.1 17.06.2011 J. Mielikainen; B. Huang Initial draft

1.0 4.07.2011 J. Mielikainen; B. Huang Version approved for release

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 2

Scope

This document describes the scientific approach to a study that was performed by
Principal Investigators Drs. Bormin Huang and Allen H.-L. Huang at the Cooperative
Institute for Meteorological Satellite Studies, the University of Wisconsin‐Madison under
contract to the EUMETSAT NWP‐SAF between February 11 and December 31, 2010. The
objective of this study was to develop the Graphics Processing Unit (GPU) accelerated
code for the RTTOV-7 IASI and AMSU-A forward models.

1. Introduction

In recent years the graphics processing unit (GPU) has evolved into a highly parallel,
multithreaded, manycore processor with tremendous computational horsepower and very
high memory bandwidth, as illustrated by the following figure 1.1. Currently, a low-cost
personal computer with the 4 NVIDIA Tesla GPU cards (total 960 GPU cores) delivers 4
TFlops of compute power. A GPU cluster with 10 such GPU computers is comparable to
the Earth Simulator, the world fastest supercomputer in 2004, which was a stadium-sized
cluster with 5120 CPU cores to deliver 40 TFlops.

Figure 1-1. Floating-Point Operations per Second (upper) and Memory Bandwidth

(lower) for the CPU and GPU. (source: NVIDIA CUDA C Programming Guide v.4.0)

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 3

 The current version of RTTOV is written in FORTRAN-90 and runs on Linux machines
from PC desktops to massively parallel supercomputers (e.g. IBM Power 6). RTTOV
performance in operational NWP systems still limits the number of channels we can use in
hyperspectral sounders to a few hundred, although new PC based simulations of the
spectra are becoming possible. The computer architecture for the next generation of
supercomputers is not clear. One possibility is to benefit from the power of GPUs and the
USA WRF model is being recoded to run on GPU systems. The fast radiative transfer
model (RTM) is very suitable for the GPU implementation as it can take advantage of the
hardware's efficiency and parallelism, where radiances of many channels can be
calculated in parallel in the GPU. Previously, GPUs have also been used very successfully
to accelerate Cooperative Institute for Meteorological Satellite Studies (CIMSS) RTM
(Huang et al., 2010) and (Mielikainen et al. 2010). This AS mission was a first step to
recode a stripped down version of the RTTOV forward model to run on a GPU based
platform and compare its performance for both AMSU-A and IASI.

2. RTTOV-7 forward model

Originally the RTTOV model was developed at European Centre for Medium-Range
Weather Forecasts (ECMWF) (Eyre and Woolf, 1988), to retrieve temperature and
humidity profiles from the Television InfraRed Observation Satellite (TIROS-N) Operational
Vertical Sounder (TOVS) (Smith et al. 1979). The RTTOV forward model performs the fast
computation of the radiances, brightness temperatures, overcast radiances, surface to
space transmittances, surface emissivities and pressure level to space transmittances.
The RTTOV fast transmittance computation uses regression coefficients derived from
accurate line-by-line (LBL) computations. This allows expressing the optical depths as a
linear combination of profile dependent predictors that are functions of temperature,
absorber amount, pressure and viewing angle (Matricardi and Saunders, 1999). LBL
models are too computationally expensive to be used in an Numerical Weather Prediction
(NWP) operational environment. The main features of the LBL models that were used to
derive the RTTOV coefficients for Infrared Atmospheric Sounding Interferometer (IASI) are
discussed in (Matricardi, 2009). The scientific aspects of RTTOV-7, which are different
from RTTOV-6 are described in (Saunders et al., 2002).

Both clear sky radiances and cloudy radiances can be simulated by the model. An
approximate form of the atmospheric radiative transfer equation is used. Neglecting
scattering effects, the top of the atmosphere upwelling radiance, L(v, θ), at a frequency v
and viewing angle θ from zenith at the surface is computed as follows

where LC (v, θ) and LF (v, θ) are the clear sky and fully cloud cover top of the
atmosphere upwelling radiances and N is the fractional cover. Clear sky top of the
atmosphere upwelling radiance is computed as follows

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 4

where τs is the surface to space transmittance, εs is the surface emissivity and B(v,T) is
the Planck function for a frequency v and temperature T. A microwave surface emissivity
model FASTEM-1 (English and. Hewison, 1998) is used to compute ocean surface
emissivity given a sea surface temperature, surface wind speed and viewing angle for a
microwave radiometer channel. The model computes a surface emissivity for the channel
of interest at the given viewing angle.

The transmittances are computed by means of a linear regression in optical depth
based on variables from the input profile vector. The simulation of transmittances in
RTTOV-7 is based on a regression scheme with 10 predictors for the mixed gases, 15 for
water vapor and 11 for ozone. The regression is performed to predict layer optical depth
directly

where K is the number of predictors, di,j is the level to space optical depth from level j
and channel i, ai,j,k are the regression coefficients. The functions Xk,j constitute the profile-
dependent predictors of the fast transmittance model. Conversion of optical depths to
transmittances is a computationally inexpensive procedure and it is described in detail in
[13]. In RTTOV-7 fast forward model there are 43 pressure levels in total. Assuming
emissivity of the cloud top to be unity and black, opaque clouds at a single level the
simulation of cloud affected radiances is defined as follows

where τc is the top of the cloud top to space radiance and Tc is the cloud top temperature.

3. GPU-based computing

The GPU-based RTTOV-7 IASI and AMSU-A forward models were performed on a low-
cost 960-core NVIDIA Tesla personal supercomputer with 1 AMD Phenom quad-core CPU
and 4 NVIDIA Tesla C1060 GPUs. The Tesla C1060 GPU has massively parallel
computing power and high memory bandwidth. Table 1 shows its specifications (Lindholm
et al., 2008).

NVIDIA CUDA is a general purpose parallel computing architecture with a new parallel
programming model and instruction set architecture to unlock the computing power of
NVIDIA GPUs. CUDA is an extension to the C programming language offering
programming GPU's directly. A CUDA program is organized into two parts: a serial

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 5

program running on the CPU and a parallel part running on the GPU. The parallel part is
called a kernel. A CUDA program automatically uses more parallelism on GPUs that have
more processor cores. A C program using CUDA extensions distributes a large number of
copies of the kernel into available multiprocessors to be executed simultaneously. The
GPU-based RTTOV-7 IASI and AMSU-A forward models can also run on other NVidia
CUDA-enabled GPUs listed in Appendix B.

The CUDA code consists of three computational phases: transmission of data into the
global memory of the GPU, execution of the GPU kernel, and transmission of results from
the GPU into the memory of CPU. The problem is divided in a grid of blocks. Each block
consists of a number of threads, which are executed in a multiprocessor. A schematic
visualization of multiprocessor architecture is presented in Fig 1.

Table 1. Specifications of the NVIDIA Tesla C1060 GPU card.

Number of Streaming Processor Cores 240

Frequency of Processor Cores 1.3 GHz

Single Precision floating point performance
(peak)

933 GLOPS

Total Dedicated Memory 4 GB GDDR3

Memory Speed 800 MHz

Memory Interface 512-bit

Memory Bandwidth 102 GB/s

Max Power Consumption 187.8 W

NVIDIA Tesla C1060 consists of 30 multiprocessors. Figure 1 presents a schematic
visualization of a GPU device. Each multiprocessor has eight cores and executes in
parallel with the other multiprocessors. All eight cores in a multiprocessor execute in data
parallel Single Instruction Multiple Data (SIMD) fashion; all cores in the same
multiprocessor execute the same instruction at the same time. Each GPU has 4 GB of
global memory, which have a higher bandwidth than the DRAM memory in the CPUs.
However, access to 16 KB of software-managed data cache, called shared memory, inside
a multiprocessor can be performed in one clock cycle compared to 400-600 cycles
required by global memory access. Therefore, it is advisable to keep frequently used data
in shared memory instead of global memory. Each core also has 16384 32-bit registers
which can be accessed in one clock cycle. A description of the CUDA programming model
can be found e.g. in (Nickolls and Dally. 2010) and (Sanders and Kandrot, 2010).

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 6

Figure 1. Schematic visualization of a GPU device.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 7

Threads are organized into a three-level hierarchy. The highest level is a grid, which
consists of thread blocks. A grid is a three-dimensional array of thread blocks and its
maximum size is 65535 thread blocks. Thread blocks implement coarse-grained scalable
data parallelism and they are executed independently, which allows them to be scheduled
in any order across any number of cores. This allows the CUDA code to scale with the
number of processors. Each thread block can consist of up to 512 threads, which provide
fine-grained data parallelism. The number of threads per thread block is also limited by the
shared memory and register usage. In order to successfully launch a kernel there must be
enough registers and shared memory available per multiprocessor to process at least one
thread block.

The current generation of NVIDIA's GPUs group threads in each thread block into
groups of 32 threads called warps. A multiprocessor issues the same instruction to all the
threads in a warp. When the threads take divergent paths, multiple passes are required to
complete the warp execution. Since each processor can manage 24 warps, and there are
up to 32 threads in each warp, each multiprocessor can support 768 active threads. At
each clock cycle, the multiprocessor schedules a suitable warp for execution. The
scheduling favors those threads whose next instructions are not waiting for a long-latency
instruction such as global memory access. Overloading the multiprocessor with a lot of
active threads allows the GPU to hide the latency of slow instructions.

An efficient use of global memory is an essential requirement for a high performance
CUDA kernel. Global memory loads and stores by threads of a half-warp (16 threads) are
coalesced by the device in as few as one memory transaction when the following access
requirements are met. First, the data type must be 32-, 64- or 128-bit. Second, the starting
address of the memory access must be aligned. Finally, the threads must access the data
sequentially.

4. GPU implementation of RTTOV-7 forward model

The GPU-based RTTOV forward model experiments were performed on a low-cost 960-
core NVIDIA Tesla personal supercomputer with 1 AMD Phenom quad-core CPU and 4
NVIDIA Tesla C1060 GPUs. The Tesla C1060 GPU has massively parallel computing
power and high memory bandwidth. In all the kernels, the overall work is divided such that
each thread is responsible for computing the results for a single channel. The difference
between single-profile and multi-profile kernels is that in a multi-profile kernel each thread
is responsible for computing the results for a single channel in several profiles. Additional
difference between multi profile Advanced Microwave Sounding Unit (AMSU-A) and IASI
kernels is that computational work for 15-band AMSU-A data is divided by half-warp. Thus,
the first 16 threads in a thread block compute results for a complete profile and the next 16
threads compute results for second AMSU-A profile.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 8

Calculate a channel number, ich, that is processed by a thread
For level = 1 to all levels

T %Transfer predictors for mixed gasses (xxm), water vapour (xxw) and oxygen (xxo)
% for the current level from global memory to shared memory
For pred = 1 to 10 % mixed gas predictor
 C = cfm[level, pred, ich] % Mixed gas coefficient from global memory to a register

For profile = 1 to nS profiles
 zopdp[level, profile] += C * xxm[pred, profile]

For pred = 1 to 15 water vapour predictor
 C = cfw[level, pred, ich] % water vapour coefficient

For profile = 1 to nS profiles
zopdp[profile] += C * xxw[pred, profile]

For pred = 1 to 11 ozone predictosr
C = cfo[level, pred, ich] % ozone coefficient

For profile = 1 to nS profiles
zopdp[profile] += C * xxo[pred, profile]

For profile = 1 to nS profiles
if zopdp[profile] < 0.0
zopdp[profile] = 0.0 % ensure a non-negative layer transmittance value
%Compute layer to space optical depths

 opdpa[profile] += zopdp[profile];
 opdp_cur = opdpa[profile];
 opdp_cur = -opdp_cur * gamma[ich]; % gamma factor transmittance corrections
 opdp_cur = max(opdp_cur, opdp_prev[profile]);
 opdp[profile, level, ich] = opdp_cur;
 opdp_prev[profile] = opdp_cur;

 tau[profile, level, ich] = expf(-opdp_cur); % optical depths to transmittances.

For profile = 1 to nS profiles

isf = nlevsf[profile] % Index of nearest std press level at/below surface
 % Surface is above level nlevsf by fracps fraction of standard pressure level interval
 za=opdp[profile,isf+1,ich] +fracps[profile] *(opdp[profile, isf, ich] -opdp[profile,isf+1 ich])
tausfc[profile, ich] = expf(-za) % Transmittances from surface to space

Figure 2. Pseudo code for CUDA kernel that calculates optical depths from every
pressure level to space, transmittances from each level to space and transmittances from
surface to space for nS profiles.

The most time consuming CUDA kernel for computing optical depths from every
pressure level to space, transmittances from each level to space and transmittances from
surface to space for several profiles is shown is Figure 2. The optimal number of profiles
for simultaneous processing was 9 and 300 for AMSU-A and IASI, respectively. The kernel
involves a dot product between regression coefficients for predicting the effective layer
optical depths and predictors for the effective layer optical depths. The dot product is
performed for three gases and 43 pressure levels. Each step of a dot product for all
channels in spectra involves the same predictor for all spectra. This allows first storing a

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 9

regression coefficient in a register and then computing multiplications between a
regression coefficients and a predictor for several profiles. Next, a new regression
coefficient is loaded into register file and a next step of a dot product is performed.
Therefore, multi-profile processing allows even greater processing speed than single-
profile processing.

Table 1 shows processing times and speedups for AMSU-A. Processing times on a CPU
are 0.287 ms for AMSU-A profile and 186.8 ms for IASI.profile. Column 1 gives a
description of the computation. Second column depicts processing times for the original
Fortran code using gfortran compiler with -O2 compiler switch for optimization. Third and
fourth columns show computation times for GPU accelerated single-profile code and its
speed up compared to the Fortran code. The last two columns show the results for multi-
profiles processing. Processing multiple profiles at a time gives much better performance
than a single profile processing. As explained earlier, the reason for this is that multiple
profile processing allows reusing the data in the fast register and shared memory instead
of loading the same data repeatedly from slow global memory into GPU cores.

Subroutine description Fortran

[ms]
Single
profile
CUDA C
[ms]

Speedup Multi
profile
CUDA C
[ms]

Speedup

Calculates optical
depths from every
pressure level to
space, transmittances
from each level to
space and
transmittances from
surface to space

0.141 0.412 0.34 0.00276 51.09

Integration of radiative
transfer equation,
convert atmospheric
temperatures to
Planck functions and
radiances to
brightness
temperatures.

0.137 0.132 1.04 0.00063 209.52

Table 1. Processing times for Fortran subroutines, single-profile CUDA C kennels and
multi-profile CUDA C kernels for AMSU-A.

In Table 2, similar processing time results are shows for IASI as were presented in Table 1
for AMSU-A. Although, both single profile and multi profile codes utilize all cores in IASI
processing there is still a significant difference between the two versions. As explained
earlier, this is due to the fact that the data that needs to be transferred from global memory
to cores is reduced in multi profile processing.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 10

Subroutine description Fortran

[ms]
Single
profile
CUDA C
[ms]

Speedup Multi profile
CUDA C
[ms]

Speedup

Calculates optical
depths from every
pressure level to
space, transmittances
from each level to
space and
transmittances from
surface to space

110.32 0.75500 146 0.291 379

Integration of radiative
transfer equation,
convert atmospheric
temperatures to
Planck functions and
radiances to
brightness
temperatures.

75.31 0.151 499 0.096 785

Table 2. Processing times for Fortran subroutines, single-profile CUDA C kennels and
multi-profile CUDA C kernels for IASI.

average

time [ms]
speedup

AMSU-A 0.638 0.4

IASI 1.191 156.9

Table 3. Processing times for 1 profile on a GPU for both AMSU-A and IASI.

In Table 3, total computation time results for single profile processing are shown both for
AMSU-A and IASI. The results are as the individual kernel results indicated before. A
single-profile AMSU-A is slower on GPU and on CPU and IASI in significantly faster on
GPU.

Concurrent GPU kernel execution and data transfer from CPU to GPU can be managed
through streams. A stream is a sequence of commands that execute in order. By
overlapping device computation with asynchronous data transfers and host computation it
is possible to reduce the total execution time. Streams are logically independent queues of
operations to be executed on GPUs. Hardware maps the commands on streams to an
engine to execute kernels and an engine to perform memory transfers. A diagram
depicting the execution timeline of the radiative transfer model is shown in Figure 2. The
five different operations are colored in different colors. Vertical direction in Figure 2
represents time.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 11

Predictors are first computed on a CPU and then they are transferred from host to device
using a copy engine on a GPU. After the memory transfer CUDA kernels are launched
asynchronously. Finally, results of CUDA kernels are transferred back to device. When the
process is repeated several times only the initial predictors, host to device memory
transfer and final device to host memory transfer are the latency that contributes to the
total time.

Figure 2. Execution timeline for five CUDA kernel executions. The five different
operations are colored in different colors.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 12

Figures 3 and 4 show average processing times for a single profile. As shown in Figure 2
the initial predictions and the final memory transfer from device to host are not overlapping
the other computation. Thus, when the number of calls to CUDA kernels is high enough
their contribution to the overall processing time becomes insignificant.

Figure 3. Average processing times [ms] for 1 profile of AMSU-A on a GPU as a function
of the number of call to multi-profile CUDA kernels.

.

Figure 4. Processing times [ms] for 1 profile of IASI on a GPU as a function of the number
of call to multi-profile CUDA kernels.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 13

In Figure 5, schematic visualization of running RTTOV on 4 GPUs is illustrated. There are
five threads controlling the four GPUs. The first thread is a master thread, which controls
the slave threads. Each GPU must be controlled by a different CPU thread. Allocation of
portable pinned memory is performed in the thread number 1. For pinned memory GPU
can use direct memory access to copy data from or to host. Using portable pinned memory
all thread see pinned memory. Between barriers 4 and 2 thread number 1 performs the
pinned memory allocation for global memory. Barrier synchronizes participating threads.
Computation begins after barrier 1. When all the threads have reached barrier 3 the
computation is finished. Resources are released after barrier 5 is reached.

Figure 5. Schematic visualization of RTTOV running on multiple GPUs.

Figure 6 shows the scaling of AMSU-A for 1 to 4 GPUs in the form of the speedup
compared to the original Fortran code. Speedup is the average GPU processing time to
process 50 calls to CUDA kernels compared to the time to run the original Fortran code.
Four GPUs take 230.26 ms to process the profiles, which is 53% longer than 149.62 ms to
process the same amount of profiles per GPU on a single GPU.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 14

Figure 6. Speedups for AMSU-A for 1 to 4 GPUs.

Figure 7. Speedups for IASI for 1 to 4 GPUs.

Figure 7 shows the scaling of IASI for 1 to 4 GPUs. Using four GPUs per profile
processing time drops from 0.405 ms to 0.104 ms for a single GPU. Thus, four GPUs have
3.89x higher speedup that 1 GPU. Therefore, IASI is much closer to the ideal linear
speedup than AMSU-A. The reasons for that will be analyzed next.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 15

 AMSU-A IASI

CPU to GPU 9112 76676
GPU to CPU 12032 136192

Table 4. The amount of data in bytes that is transferred between CPU and GPU per
profile.

By dividing total amount of memory transfers in Table 4 by the per profile processing times
we get the number of transferred bytes in a second. The resulting global memory
throughput in MB/s for AMSU-A and IASI are shown in Figure 8. Theoretical PCI express
2.0 bandwidth is 8.0 GB/s (4.0 GB/s per direction). In practice, measuring throughput using
NVIDIA's bandwidth test program memory throughputs of 3094.5 MB/s and 3162.5 MB/s
for host to device and device to host transfers was measured. Based on the above,
AMSU-A is limited by the PCI express bus throughput from GPU to CPU. On the other
hand, the measured global memory overall throughput for IASI CUDA kernels is 80 GB/s.
Thus, IASI is limited by global memory throughput.

Figure 8. Global memory throughput in MB/s for AMSU-A and IASI for both transfer
directions.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 16

Device to host
memory transfer

Device to host
memory transfer

Copy engine Kernel Engine

Host to Device
memory transfer

Host to Device
memory transfer

CUDA
Kernels

CUDA
Kernels

Host to Device
memory transfer

Host to Device
memory transfer

Device to host
memory transfer

Device to host
memory transfer

Host to Device
memory transfer

Host to Device
memory transfer

Device to host
memory transfer

Device to host
memory transfer

Host to Device
memory transfer

Host to Device
memory transfer

CUDA
Kernels

CUDA
Kernels

CUDA
Kernels

CUDA
Kernels

CUDA
Kernels

CUDA
Kernels

CUDA
Kernels

CUDA
Kernels

Host to Device
memory transfer

Host to Device
memory transfer

Device to host
memory transfer

Device to host
memory transfer

Device to host
memory transfer

Device to host
memory transfer

tim
e

Figure 9. Execution timeline for five CUDA kernel executions. The five different
operations are colored in different colors.

A diagram depicting the execution timeline of the Pure GPU AMSU-A is shown in Figure 9.
Vertical direction in Figure 9 represents time. In this case CUDA kernels also include
predictor kernel, which is computer before the other kernels. This arrangement reduced
the amount of transferred data from CPU to GPU. Thus, reducing the execution time.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 17

Number of GPUs Execution time for 1 profile [ms] Speedup

1 0.00513 56x
2 0.00276 104x
3 0.00236 122x
4 0.00229 125x

Table 5. Execution time for pure GPU AMSU-A.

Figure 10. Speedups for CPU/GPU-hybrid and pure-GPU AMSU-A.

In Table 5, execution times and speedups for pure-GPU AMSU-A are depicted. Figure 10
compares speedups for CPU/GPU-hybrid AMSU-A and pure-GPU AMSU-A. It can be
seen that version pure-GPU AMSU-A is two times faster than AMSU-A CPU/GPU hybrid
for 1 GPU. With 4 GPUs the speedup is reduced to 1.64x as pure-GPU AMSU-A becomes
limited by the PCI express bus throughput from GPU to CPU.

5. Conclusions

GPU computing is more effective for a hyperspectral IASI sensor than AMSU-A sensor as
IASI yields more computations per data transfer between host and device. To compute
one day's amount of 1,296,000 IASI spectra, the CPU code will take 2.8 days, whereas the
multi-input 1-GPU and 4-GPU codes will take 8.75 and 2.25 minutes, respectively.

6. References

English S. J. and. T. J. Hewison, 1998. A fast generic millimetre wave emissivity model. In
Proeedings of Microwave remote sensing of the atmosphere and environment, Beijing,

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 18

China 15-17 Sep 1998. Society of Photo-Optical Instrumentation Engineers: Bellingham,
WA. DOI: 10.1117/12.319490.
Eyre J. R., and H. M. Woolf, 1988. Transmittance of atmospheric gases in the microwave
region: a fast model. Appl. Optics. 27: 3244 – 3249. DOI:10.1364/AO.27.003244
Huang B., Mielikainen J., Oh H. and Huang H.-L, "Development of a GPU-based high-
performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer
(IASI)," Journal of computational Physics, DOI:10.1016/j.jcp.2010.09.011
Lindholm E., Nickolls J., Oberman S., and J. Montrym, 2008. NVIDIA Tesla: A Unified
Graphics and Computing Architecture. IEEE Micro, 28: 39 – 55.
DOI:10.1109/MM.2008.31.
Matricardi M, and R. Saunders, 1999. Fast radiative transfer model for simulation of
infrared atmospheric sounding interferometer radiances. Appl. Optics. 38: 5679 – 5691.
DOI:10.1364/AO.38.005679.
Matricardi M, 2009. An assessment of the accuracy of the RTTOV fast radiative transfer
model using IASI data. Atmos. Chem. Phys. Discuss. 9: 9491 – 9535. DOI:10.5194/acp-9-
6899-2009.
Mielikainen J., Huang B. and Huang A., “GPU Accelerated Multi-Profile Radiative Transfer
Model for the Infrared Atmospheric Sounding Interferometer,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, submitted for publication.
Nickolls J, and W. J. Dally, 2010. The GPU Computing Era. IEEE Micro. 30: 56-69.
DOI:10.1109/MM.2010.41.
Saunders R. W., English S., Rayer P., Matricardi M., Chevallier F., Brunel P., and G.
Deblonde, 2002. ‘RTTOV-7: a satellite radiance simulator for the new millennium’. In
Proceedings of ITSC-XII Lorne, Australia, Feb 26 – Mar 5, 2002.
Sanders J and E. Kandrot, 2010. CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional: Ann Arbor, Michigan.
Smith W. L., Woolf H. M., Hayden C. M., Wark D. Q., and L. M. McMillin, 1979. The
TIROS-N operational vertical sounder. Bull. Am. Meteorol. Soc. 60: 1177 – 1187.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 19

Annex: RTTOV-7 GPU Users Guide

This documentation was developed within the context of the EUMETSAT Satellite
Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation
Agreement dated 10 February 2010, between the Space Science and Engineering Center
(SSEC), University of Wisconsin-Madison, USA and the Met Office, UK, by one or more
partners within the NWP SAF. The partner in the NWP SAF is the Met Office.
Before attempting to use the RTTOV-7 GPU model the reader is advised to also read the
RTTOV-7 Users Guide for an overview of the RTTOV-7 fast radiative transfer model and
information about the Fortran implementation running on a CPU. This document shows
how to install the RTTOV-7 fast radiative transfer model GPU code on a Linux platform
and run it.

1 Prerequisites

In order to install RTTOV-7 GPU, a CUDA enabled graphics processor is required along
with some related software, which are described below.

1.1 CUDA enabled graphics processor

Every NVIDIA GPU since the 2006 release of the GeForce 8800 GTX has been CUDA-
enabled. For a complete list a CUDA-enabled graphics processors consult NVIDIA website
at http://www.nvidia.com/cuda.

1.2 NVIDIA device driver

Visit http://www.nvidia.com/cuda and click the "Download Drivers" link. Select the options
that match the graphics card and operating system on which you plan to compile the code.

1.3 CUDA development toolkit

You can download the CUDA toolkit at
http://developer.nvidia.com/object/gpucomputing.html.

1.4 Standard C compiler for the host code

Linux distributions ship with the GNU Compiler Collection (gcc) installed, which is used for
compiling the host code. Also, Intel C++ Compiler (icc) can be used as a host compiler for
CUDA 3.2 or higher.

2 Test programs

There are six Unix test scripts for running test programs. Each of the test scripts requires
both associated input data files and radiative transfer coefficient files. The main directory

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 20

for those files is set in dir.sh file. The output of test programs run on user’s machines are
print.dat and print.diff, which are the output of the test program and the difference between
the CPU and GPU versions outputs, respectively. The CUDA C code consists of CUDA C
kernels and C functions and top level test programs (tstrad.c and tstrad_multi.cu) for
complete testing of the RTTOV subroutines. The first step is to compile the code and to
make the executables using the makefile supplied.

In order to compile the source code both NVIDIA device driver and CUDA development
toolkit have to be installed (Sections 1.2 and 1.3). After installation, uncompress and
expand the compressed tar file containing the source code:

tar xvfz rttov7_gpu.tgz

Next, change current directory to newly created rttov7_gpu directory:

cd rttov7_gpu

Type make and the code will compile and produce the following executables

tstrad Processes a single IASI profile during one call to a CUDA kernel
tstrad_multi Tests multi-profile GPU code that processes 9 IASI profiles

during one call to a CUDA kernel. If the number of profiles is not
a multiple of 9 then the residual profiles are computed using
single-profile GPU code

tstrad_multi_GPU Multi GPU version of the above
tstrad_15 Processes a single AMSU-A profile during one call to a CUDA

kernel
tstrad_multi_15 Processes 300 IASI profiles during one call to a CUDA kernel If

the number of profiles is not a multiple of 300 then the residual
profiles are computed using single-profile GPU code

tstrad_multi_GPU_15 Multi GPU version of the above

The corresponding test scripts for running test programs are amsua.sh, amsua_multi.sh,
amsua_multi_GPU.sh, iasi.sh, iasi_multi.sh and iasi_multi_GPU.sh.

There also exists an experimental pure GPU version for AMSU-A, which is in compressed
tar file named rttov7_pure_gpu.tgz. The above explanation for installation applies to it as
well. However, there are only two test scripts for pure GPU AMSU-A: amsua_multi.sh and
amsua_multi_GPU.sh.

3 Running RTTOV-7 GPU for your applications

3.1 High level interface to RTTOV-7 GPU

To run RTTOV-7 for a user’s application files tstrad.cu and tstrad_multi.cu can be used as
a rough guide or template. Using a C pre-processor directive MULTI_GPU files
tstrad_multi.cu and rttov_multi.cu illustrate how to initialize multiple GPUs and to call

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 21

CUDA kernels that compute RTTOV-7 forward model for multiple profiles. The number of
GPUs is defined in file multiGPU.h using variable GPU_N. The input to function rttov is
transferred using a struct TGPUplan, which has the following fields:

data type variable name field description
 * for arrays

int thr_id Thread id
int alloc_host_mem 1 for a thread that allocates host memory, 0

otherwise
int alloc_nprof Number of profiles the resuls are computed
int device GPU device id
float pangl Satellite local zenith angle (deg)
float pangs Solar zenith angle at surface (deg)
int ksurf Surface type index
int knchpf The number of channels
float *pav Atmospheric profile variables
float *psav Surface air variables
float *pssv Surface skin variables
float *pcv Cloud variables
float *pemis Surface emissivities
float *prad Radiances (mw/cm-1/ster/sq.m)
int lcloud Switch for cloud computation
float *emc Emissivity model data
float *cfm Mixed gas coeffs
float *cfw Water vapour coeffs
float *cfo Ozone coeffs
int max_nprof Number of profiles the memory is allocated
float *freq Channel frequencies in GHz
int fmv_gas Number of active gases
int sensor Sensor number
float *tc1 Band correction coefficient: offset in K
float *tc2 Band correction coefficient: slope in K
float *bcon1 1st Planck function constant in mW/m**2/sr/cm**-4
float *bcon2 2nd Planck function constant in K/cm**-1
float *emcir Satellite and ir channel for surf
float *wvnum Wavenumber in cm**-1
int *mpol Polarization of each channel
float *gamma_factor Gamma factor transmittance corrections
float *xpres Standard pressure levels for transmittance
float *dpres Intervals between standard pressure levels in mb

Two global integer arrays of size GPU_N are also used as inputs for rttov_multi function.

array name description

global_nprof The number of profiles that are computed using a thread
global_first_prof The id number of the first profile

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 22

First, initialize the input variables to rttov_multi function in your code. Next, one rttov_multi
is executed on a thread in order to initialize the pinned host memory for input data for
CUDA kernels (see below for description). After memory initialization, all the other threads
running rttov_multi function are started.

3.2 Low level interface to RTTOV-7 GPU

In rttov_multi function, a call to a function prfin is made to set up profile-dependent
variables for subsequent radiative transfer calculations by CUDA kernels, which are called
from rttov. Input and outputs to CPU function prfin and CUDA functions are listed in
Appendix A. After that, the following data is transfered for CUDA kernels from CPU to
GPU:

variable name description

pemis Surface emissivities
plandfastem Microwave surface emissivity coefficients
debyeprof Functions of debye terms of profile for cloud calc
xxm Func. of profile for mixed gas
xxw for water vapour
xxo for ozone
xxc for cloud liquid water
temp Temperature profile in K
fracps Fraction of std press level interval by which surface is

above a predefined level
fracpc Fraction of std press level interval by which cloud is above a

predefined level
ta Surface air temperature in K
ts Surface skin temperature in K
cldf Fractional (ir) cloud cover
nlevsf Index of nearest std press level at/below surface
nlevcd Index of nearest std press level at/below cloud top

Next, the following five CUDA kernels are executed:
opdep_multi Calculates optical depths from every pressure level to space,

transmittances from each level to space and transmittances
from surface to space

plncx Converts atmospheric temperatures to Planck functions
emiss Sets up surface emissivity for radiative transfer calculation
rtint Integration of radiative transfer equation
brigv Converts radiances to brightness temperatures

Output from GPU to CPU:
variable name description

prad Radiances (mw/cm-1/ster/sq.m)
ptb Brightness temperatures (K)
rado Overcast radiance at given cloud top in mw/m2/sr/cm-1
tausfc Transmittance from surface

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 23

tau Transmittance from each standard pressure level 1

3.3 Multi-profile CUDA kernels on 1 GPU

Without MULTI_GPU pre-processor directive tstrad_multi.cu and rttov_multi.cu illustrate
how to initialize a single GPU and to call CUDA kernels that compute RTTOV-7 forward
model for multiple profiles using a single CUDA kernel call. In this case, the use of the
routines is significantly simplified compared to multiple GPU case as there are no threads
running on multiple CPU cores to worry about.

3.4 Single-profile CUDA kernels on 1 GPU

Files tstrad.cu and rttov.cu illustrate how to initialize a single GPU and to call CUDA
kernels that compute RTTOV-7 forward model for a single profile. The input is similar to
the multi-profile case above.

4 Source code

The source code of RTTOV-7 GPU consists of the following CUDA C and C files:

tstrad.cu Main test program
rttovcf.c Routine to read a RTTOV coefficient file
rttov.cu Computes multi-channel level to space

transmittances, top of atmosphere
radiances and brightness temperatures
for a profile

prfin.c Sets up profile-dependent variables for
subsequent radiative transfer calculations
by other subroutines of rttov

prslev.c Locate given pressures on array of fixed
levels

debye.c Sets up debye terms for radiative transfer
calculations

prftau.c Store profile variables for transmittance
calc

opdep.cu Calculates optical depths from every
pressure level to space, transmittances
from each level to space and
transmittances from surface to space

plncx.cu Converts atmospheric temperatures to
Planck functions

emiss.cu Sets up surface emissivity for radiative
transfer calculation

rtint.cu Integration of radiative transfer equation
brigv.cu Converts radiances to brightness

temperatures

1 AMSU-A only

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 24

The following three CUDA C files are kernels for both AMSU-A and IASI multi-profile
versions. If a macro M15 is defined then AMSU-A versions are compiled. Otherwise, IASI
versions are compiled. For multi-profile files if macro MULTI_GPU is defined then multi
GPU versions are compiled. Otherwise, single GPU versions are compiled. For multi GPU
version the number of GPUs and their ids are defined in tstrad_multi.cu using GPU_N and
DEV variables.

tstrad.cu Main test program for single-profile processing
rttov_multi.cu Computes multi-channel level to space transmittances, top

of atmosphere radiances and brightness temperatures for
multiple-profiles. If macro USE_TIMER is defined then
processing times are printed to stdout.

tstrad_multi.cu Main test program for multi-profile processing. If macro
MEASURE_TIME is defined then processing times are
printed to stdout

Source file opdep_multi.cu is CUDA C file for IASI multi-profile version. These are also
four CUDA kernels for AMSU-A multi-profile version: brigv_multi_15.cu,
opdep_multi_15.cu, plncx_multi_15.cu and rtint_multi_15.cu.

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 25

Appendix A: Parameters of RTTOV-7 GPU functions

Input to prfin is the following:

variable name description

pav Atmospheric profile variables
psav Surface air variables
pssv Surface skin variables
pcv Cloud variables (0-1)
pemis Surface emissivities (0-1)
knpf Number of profiles
knchpf Number of channels
pangl Satellite local zenith angle (deg)
pangs Solar zenith angle at surface (deg)
ksurf Surface type index
ksat Satellite index

Output for prfin is the following:
xxm Functions of profile for mixed gas
xxw for water vapour
xxo for ozone
xxc for cloud liquid water
debyeprof Functions of debye terms of profile for cloud calc
nstype Surface type index; 1=sea, 0=land 2=ice
xpath Secant of viewing path angle at surface
snad2 Sine nadir angle squared
cnad2 Cos nadir angle squared
czen Cosine zenith angle
czen2 Cos zenith angle squared
szen2 Sine zenith angle squared
nlevsf Index of nearest std press level at/below surface
fracps Fraction of std press level interval by which surface is

above level nlevsf
surfw Surface wind-speed m/s
nlevcd Index of nearest std press level at/below cloud top
fracpc Fraction of std press level interval by which cloud is

above level nlevcd
ts Surface skin temperature in K
temp Temperature profile in K
wmix Specific humidity profile in ppmv
ozon Ozone profile in ppmv
cldw Cloud liquid water in kg/kg
emis Surface emissivity (0-1)
ta Surface air temperature in K
cldf Fractional (ir) cloud cover
plandfastem Fastem land microwave surface emissivity coefficients

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 26

Input to opdep_multi:
knchpf Number of channels
xxm Functions of profile for mixed gas
xxw for water vapour
xxo for ozone
xxc for cloud liquid water
debyeprof Functions of debye terms of profile for cloud calc
pitch Width of the allocated multi-dimensional arrays in bytes
cfm Mixed gas coeffs
cfw Water vapour coeffs
cfo Ozone coeffs
freq Channel frequencies in GHz
gamma Gamma factor transmittance corrections
njplev Number of pressure levels
fmv_gas Number of active gases
sensor Sensor number for each triplet
nmwcldtop Upper level for lwp calcs
nlevsf Index of nearest std press level at/below surface
fracps Fraction of std press level interval by which surface is

above level nlevsf
htod_len Length of input data for a profile in floats
dtoh_len Length of output data for a profile in floats

Output from opdep_multi:
opdp Optical depth from press level to space
tau Transmittance from each standard pressure level (0-1)
taufc Transmittance from surface (0-1)

Input to plncx:
ptemp Brightness temperatures
knchpf Width in bytes of the allocated arrays
tc1 Band correction coefficient: offset in K
tc2 Band correction coefficient: slope in K/K
bcon1 1st Planck function constant in mW/m**2/sr/cm**-4
bcon2 2nd Planck function constant in K/cm**-1
pitch Width of the allocated multi-dimensional arrays in bytes
ptemp2 Brightness temperatures
ptemp3 Brightness temperatures

Output from plncx:
b Planck function for temperatures profiles
ba Planck functions surface air temp
bs Planck functions surface skin temp

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 27

Input to emiss:
knchpf Number of processed radiances
tausfc Transmittances from surface to space (0-1)
nstype Surface type index; 1=sea, 0=land 2=ice
xpath Secant of viewing path angle at surface
snad2 Sine nadir angle squared
cnad2 Cos nadir angle squared
czen Cosine zenith angle
czen2 Cos zenith angle squared
szen2 Sine zenith angle squared
surfw Surface wind-speed m/s
ts Surface skin temperature in K
emis Surface emissivity (0-1)
sensor Sensor number for each triplet
freq Channel frequencies in GHz
emcir Satellite and ir channel for surf emissivity model ssirem
wvnum Wavenumber in cm**-1
mpol Polarization of each channel
emc Emissivity model data
plandfastem Microwave surface emissivity coefficients
pitch Width of the allocated multi-dimensional arrays in bytes

Output from emiss:
pems Surface emissivities (0-1)
pref Surface reflectivities (0-1)

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 28

Input to rtint:
ems Surface emissivities (0-1)
refl Surface reflectivities (0-1)
emis Surface emissivity (0-1)
fast_emis 1 if emissivity was computed using fast in-place method, 0

otherwise
tau Transmittances from each level to space (0-1)
tausfc Transmittances from surface to space (0-1)
b Planck functions for temperatures profiles
ba Planck functions for surface air temp
bs Planck functions for surface skin temp
nlevsf Index of nearest std press level at/below surface
fracps Fraction of std press level interval by which surface is above

a predefined level
nlevcd Index of nearest std press level at/below cloud top
fracpc Fraction of std press level interval by which cloud is above a

predefined level
pitch Width of the allocated multi-dimensional arrays in bytes
cldf Fractional (ir) cloud cover
tc1 Band correction coefficient: offset in K
tc2 Band correction coefficient: slope in K
bcon1 1st Planck function constant in mW/m**2/sr/cm**-4
bcon2 2nd Planck function constant in K/cm**-1
knchpf Number of channels
lcloud Switch for cloud computation
sensor Sensor number for each triplet
njplev Number of pressure levels

Output from rtint:
prad Output array of radiances
rado Overcast radiances for given cloud-top pressures
bdt Stores upwelling radiation from atmosphere above each level
bdtr Stores down-welling radiation at each level from atmosphere

above
ztcold Intermediate temperature array
zbcold Intermediate temperature array

Input to brigv:
knchpf Number of channels
prad Radiances
tc1 Band correction coefficient: offset in K
tc2 Band correction coefficient: slope in K
bcon1 1st Planck function constant in mW/m**2/sr/cm**-4
bcon2 2nd Planck function constant in K/cm**-1

Output from brigv:
ptb Brightness temperatures

Development of GPU-based
RTTOV-7 IASI and AMSU
Radiative Transfer Models

Doc ID : NWPSAF-MO-VS-043
Version : 1.0
Date : 4 July 2011

 29

Appendix B: CUDA enabled GPUs

GPUs Cards Compute

capability

(version)

G80 GeForce 8800GTX/Ultra/GTS, Tesla

C/D/S870, FX4/5600, 360M

1.0

G86, G84, G98,

G96, G96b, G94,

G94b, G92, G92b

GeForce 8400GS/GT, 8600GT/GTS,

8800GT, 9600GT/GSO,

9800GT/GTX/GX2, GTS 250, GT

120/30, FX 4/570, 3/580, 17/18/3700,

4700x2, 1xxM, 32/370M, 3/5/770M,

16/17/27/28/36/37/3800M,

NVS420/50

1.1

GT218, GT216,

GT215

GeForce 210, GT 220/40, FX380 LP,

1800M, 370/380M, NVS 2/3100M

1.2

GT200, GT200b GTX 260/75/80/85, 295, Tesla

C/M1060, S1070, CX, FX 3/4/5800

1.3

GF100, GF110 GTX 465, 470/80, Tesla C2050/70,

S/M2050/70, Quadro 600,4/5/6000,

Plex7000, 500M, GTX570, GTX580

2.0

GF108, GF106,

GF104

GT 420/30/40, GTS 450, GTX 460 2.1

