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Scope 
 

This document describes the scientific approach to a study that was performed by 
Principal Investigators Drs. Bormin Huang and Allen H.-L. Huang at the Cooperative 
Institute for Meteorological Satellite Studies, the University of Wisconsin‐Madison under 
contract to the EUMETSAT NWP‐SAF between February 11 and December 31, 2010. The 
objective of this study was to develop the Graphics Processing Unit (GPU) accelerated 
code for the RTTOV-7 IASI and AMSU-A forward models.  
 

1. Introduction 
 
In recent years the graphics processing unit (GPU) has evolved into a highly parallel, 
multithreaded, manycore processor with tremendous computational horsepower and very 
high memory bandwidth, as illustrated by the following figure 1.1. Currently, a low-cost 
personal computer with the 4 NVIDIA Tesla GPU cards (total 960 GPU cores) delivers 4 
TFlops of compute power. A GPU cluster with 10 such GPU computers is comparable to 
the Earth Simulator, the world fastest supercomputer in 2004, which was a stadium-sized 
cluster with 5120 CPU cores to deliver 40 TFlops. 

 

 
 

 
 
Figure 1-1. Floating-Point Operations per Second (upper) and Memory Bandwidth 

(lower) for the CPU and GPU. (source: NVIDIA CUDA C Programming Guide v.4.0) 
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   The current version of RTTOV is written in FORTRAN-90 and runs on Linux machines 
from PC desktops to massively parallel supercomputers (e.g. IBM Power 6). RTTOV 
performance in operational NWP systems still limits the number of channels we can use in 
hyperspectral sounders to a few hundred, although new PC based simulations of the 
spectra are becoming possible. The computer architecture for the next generation of 
supercomputers is not clear. One possibility is to benefit from the power of GPUs and the 
USA WRF model is being recoded to run on GPU systems. The fast radiative transfer 
model (RTM) is very suitable for the GPU implementation as it can take advantage of the 
hardware's efficiency and parallelism, where radiances of many channels can be 
calculated in parallel in the GPU. Previously, GPUs have also been used very successfully 
to accelerate Cooperative Institute for Meteorological Satellite Studies (CIMSS) RTM 
(Huang et al., 2010) and (Mielikainen et al. 2010).  This AS mission was a first step to 
recode a stripped down version of the RTTOV forward model to run on a GPU based 
platform and compare its performance for both AMSU-A and IASI.  
 
 

2. RTTOV-7 forward model 
 
Originally the RTTOV model was developed at European Centre for Medium-Range 
Weather Forecasts (ECMWF) (Eyre and Woolf, 1988), to retrieve temperature and 
humidity profiles from the Television InfraRed Observation Satellite (TIROS-N) Operational 
Vertical Sounder (TOVS) (Smith et al. 1979). The RTTOV forward model performs the fast 
computation of the radiances, brightness temperatures, overcast radiances, surface to 
space transmittances, surface emissivities and pressure level to space transmittances. 
The RTTOV fast transmittance computation uses regression coefficients derived from 
accurate line-by-line (LBL) computations. This allows expressing the optical depths as a 
linear combination of profile dependent predictors that are functions of temperature, 
absorber amount, pressure and viewing angle (Matricardi and Saunders, 1999). LBL 
models are too computationally expensive to be used in an Numerical Weather Prediction 
(NWP) operational environment. The main features of the LBL models that were used to 
derive the RTTOV coefficients for Infrared Atmospheric Sounding Interferometer (IASI) are 
discussed in (Matricardi, 2009). The scientific aspects of RTTOV-7, which are different 
from RTTOV-6 are described in (Saunders et al., 2002). 

 

Both clear sky radiances and cloudy radiances can be simulated by the model. An 
approximate form of the atmospheric radiative transfer equation is used. Neglecting 
scattering effects, the top of the atmosphere upwelling radiance, L(v, θ), at a frequency v 
and viewing angle θ from zenith at the surface is computed as follows 

 

where LC (v, θ ) and LF (v, θ )  are the clear sky and fully cloud cover top of the 
atmosphere upwelling radiances  and N is the fractional cover. Clear sky top of the 
atmosphere upwelling radiance is computed as follows 
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where τs is the surface to space transmittance, εs is the surface emissivity and B(v,T) is 
the Planck function for a frequency v and temperature T. A microwave surface emissivity 
model FASTEM-1 (English and. Hewison, 1998) is used to compute ocean surface 
emissivity given a sea surface temperature, surface wind speed and viewing angle for a 
microwave radiometer channel. The model computes a surface emissivity for the channel 
of interest at the given viewing angle. 

 

The transmittances are computed by means of a linear regression in optical depth 
based on variables from the input profile vector. The simulation of transmittances in 
RTTOV-7 is based on a regression scheme with 10 predictors for the mixed gases, 15 for 
water vapor and 11 for ozone. The regression is performed to predict layer optical depth 
directly 

 

where K is the number of predictors, di,j is the level to space optical depth from level j 
and channel i, ai,j,k are the regression coefficients. The functions Xk,j constitute the profile-
dependent predictors of the fast transmittance model. Conversion of optical depths to 
transmittances is a computationally inexpensive procedure and it is described in detail in 
[13]. In RTTOV-7 fast forward model there are 43 pressure levels in total. Assuming 
emissivity of the cloud top to be unity and black, opaque clouds at a single level the 
simulation of cloud affected radiances is defined as follows 

 

where τc is the top of the cloud top to space radiance and Tc is the cloud top temperature. 
 
 

3. GPU-based computing 
 

 
The GPU-based RTTOV-7 IASI and AMSU-A forward models were performed on a low-
cost 960-core NVIDIA Tesla personal supercomputer with 1 AMD Phenom quad-core CPU 
and 4 NVIDIA Tesla C1060 GPUs. The Tesla C1060 GPU has massively parallel 
computing power and high memory bandwidth.  Table 1 shows its specifications (Lindholm 
et al., 2008). 

NVIDIA CUDA is a general purpose parallel computing architecture with a new parallel 
programming model and instruction set architecture to unlock the computing power of 
NVIDIA GPUs. CUDA is an extension to the C programming language offering 
programming GPU's directly. A CUDA program is organized into two parts: a serial 
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program running on the CPU and a parallel part running on the GPU. The parallel part is 
called a kernel. A CUDA program automatically uses more parallelism on GPUs that have 
more processor cores. A C program using CUDA extensions distributes a large number of 
copies of the kernel into available multiprocessors to be executed simultaneously. The 
GPU-based RTTOV-7 IASI and AMSU-A forward models can also run on other NVidia 
CUDA-enabled GPUs listed in Appendix B. 

The CUDA code consists of three computational phases: transmission of data into the 
global memory of the GPU, execution of the GPU kernel, and transmission of results from 
the GPU into the memory of CPU.  The problem is divided in a grid of blocks. Each block 
consists of a number of threads, which are executed in a multiprocessor. A schematic 
visualization of multiprocessor architecture is presented in Fig 1. 

 

Table 1. Specifications of the NVIDIA Tesla C1060 GPU card. 

Number of Streaming Processor Cores 240 

Frequency of  Processor  Cores 1.3 GHz 

Single Precision floating point performance  
(peak) 

933 GLOPS 

Total Dedicated Memory              4 GB GDDR3 

Memory Speed 800 MHz 

Memory Interface 512-bit 

Memory Bandwidth 102 GB/s 

Max Power Consumption 187.8 W 

 

NVIDIA Tesla C1060 consists of 30 multiprocessors. Figure 1 presents a schematic 
visualization of a GPU device. Each multiprocessor has eight cores and executes in 
parallel with the other multiprocessors. All eight cores in a multiprocessor execute in data 
parallel Single Instruction Multiple Data (SIMD) fashion; all cores in the same 
multiprocessor execute the same instruction at the same time. Each GPU has 4 GB of 
global memory, which have a higher bandwidth than the DRAM memory in the CPUs. 
However, access to 16 KB of software-managed data cache, called shared memory, inside 
a multiprocessor can be performed in one clock cycle compared to 400-600 cycles 
required by global memory access. Therefore, it is advisable to keep frequently used data 
in shared memory instead of global memory. Each core also has 16384 32-bit registers 
which can be accessed in one clock cycle. A description of the CUDA programming model 
can be found e.g. in (Nickolls and Dally. 2010) and (Sanders and Kandrot, 2010). 
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Figure 1.  Schematic visualization of a GPU device. 
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Threads are organized into a three-level hierarchy. The highest level is a grid, which 
consists of thread blocks. A grid is a three-dimensional array of thread blocks and its 
maximum size is 65535 thread blocks. Thread blocks implement coarse-grained scalable 
data parallelism and they are executed independently, which allows them to be scheduled 
in any order across any number of cores. This allows the CUDA code to scale with the 
number of processors. Each thread block can consist of up to 512 threads, which provide 
fine-grained data parallelism. The number of threads per thread block is also limited by the 
shared memory and register usage. In order to successfully launch a kernel there must be 
enough registers and shared memory available per multiprocessor to process at least one 
thread block.  

The current generation of NVIDIA's GPUs group threads in each thread block into 
groups of 32 threads called warps. A multiprocessor issues the same instruction to all the 
threads in a warp. When the threads take divergent paths, multiple passes are required to 
complete the warp execution. Since each processor can manage 24 warps, and there are 
up to 32 threads in each warp, each multiprocessor can support 768 active threads. At 
each clock cycle, the multiprocessor schedules a suitable warp for execution. The 
scheduling favors those threads whose next instructions are not waiting for a long-latency 
instruction such as global memory access. Overloading the multiprocessor with a lot of 
active threads allows the GPU to hide the latency of slow instructions. 

An efficient use of global memory is an essential requirement for a high performance 
CUDA kernel. Global memory loads and stores by threads of a half-warp (16 threads) are 
coalesced by the device in as few as one memory transaction when the following access 
requirements are met. First, the data type must be 32-, 64- or 128-bit. Second, the starting 
address of the memory access must be aligned. Finally, the threads must access the data 
sequentially. 

4. GPU implementation of RTTOV-7 forward model 
 

The GPU-based RTTOV forward model experiments were performed on a low-cost 960-
core NVIDIA Tesla personal supercomputer with 1 AMD Phenom quad-core CPU and 4 
NVIDIA Tesla C1060 GPUs.  The Tesla C1060 GPU has massively parallel computing 
power and high memory bandwidth. In all the kernels, the overall work is divided such that 
each thread is responsible for computing the results for a single channel. The difference 
between single-profile and multi-profile kernels is that in a multi-profile kernel each thread 
is responsible for computing the results for a single channel in several profiles. Additional 
difference between multi profile Advanced Microwave Sounding Unit (AMSU-A) and IASI 
kernels is that computational work for 15-band AMSU-A data is divided by half-warp. Thus, 
the first 16 threads in a thread block compute results for a complete profile and the next 16 
threads compute results for second AMSU-A profile. 
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Calculate a channel number, ich, that is processed by a thread 
For level = 1 to all levels 

T    %Transfer predictors for mixed gasses (xxm), water vapour (xxw) and oxygen (xxo) 
% for the current level from global memory to shared memory 
For pred = 1 to 10 % mixed gas predictor 
  C = cfm[level, pred, ich]  % Mixed gas coefficient from global memory to a register 

For profile = 1 to nS profiles 
 zopdp[level, profile] += C * xxm[pred, profile] 

For pred = 1 to 15 water vapour predictor 
  C = cfw[level, pred, ich]   % water vapour coefficient 

For profile = 1 to nS profiles 
zopdp[profile] += C * xxw[pred, profile] 

For pred = 1 to 11 ozone predictosr 
C = cfo[level, pred, ich]   % ozone coefficient 

For profile = 1 to nS profiles 
zopdp[profile] += C * xxo[pred, profile] 

For profile = 1 to nS profiles 
if zopdp[profile] < 0.0 
zopdp[profile] = 0.0   % ensure a non-negative layer transmittance value 
%Compute layer to space optical depths 

        opdpa[profile] += zopdp[profile]; 
        opdp_cur = opdpa[profile]; 
        opdp_cur = -opdp_cur * gamma[ich]; % gamma factor transmittance corrections 
        opdp_cur = max(opdp_cur, opdp_prev[profile]); 
        opdp[profile, level, ich] = opdp_cur; 
        opdp_prev[profile] = opdp_cur; 

 tau[profile, level, ich] = expf(-opdp_cur); % optical depths to transmittances. 
 
For profile = 1 to nS profiles 

isf = nlevsf[profile]      % Index of nearest std press level at/below surface 
  % Surface is above level nlevsf by fracps fraction of standard pressure level interval 
  za=opdp[profile,isf+1,ich] +fracps[profile] *(opdp[profile, isf, ich] -opdp[profile,isf+1 ich]) 
tausfc[profile, ich] = expf(-za) % Transmittances from surface to space 

 

Figure 2.  Pseudo code for CUDA kernel that calculates optical depths from every 
pressure level to space, transmittances from each level to space and transmittances from 
surface to space for nS profiles. 
 

The most time consuming CUDA kernel for computing optical depths from every 
pressure level to space, transmittances from each level to space and transmittances from 
surface to space for several profiles is shown is Figure 2. The optimal number of profiles 
for simultaneous processing was 9 and 300 for AMSU-A and IASI, respectively. The kernel 
involves a dot product between regression coefficients for predicting the effective layer 
optical depths and predictors for the effective layer optical depths. The dot product is 
performed for three gases and 43 pressure levels. Each step of a dot product for all 
channels in spectra involves the same predictor for all spectra. This allows first storing a 



 

 

Development of GPU-based 
RTTOV-7 IASI and AMSU 
Radiative Transfer Models 

Doc ID : NWPSAF-MO-VS-043 
Version : 1.0 
Date : 4 July 2011 

 

 

  9  

regression coefficient in a register and then computing multiplications between a 
regression coefficients and a predictor for several profiles. Next, a new regression 
coefficient is loaded into register file and a next step of a dot product is performed. 
Therefore, multi-profile processing allows even greater processing speed than single-
profile processing. 

 

Table 1 shows processing times and speedups for AMSU-A. Processing times on a CPU 
are 0.287 ms for AMSU-A profile and 186.8 ms for IASI.profile. Column 1 gives a 
description of the computation. Second column depicts processing times for the original 
Fortran code using gfortran compiler with -O2 compiler switch for optimization. Third and 
fourth columns show computation times for GPU accelerated single-profile code and its 
speed up compared to the Fortran code. The last two columns show the results for multi-
profiles processing. Processing multiple profiles at a time gives much better performance 
than a single profile processing. As explained earlier, the reason for this is that multiple 
profile processing allows reusing the data in the fast register and shared memory instead 
of loading the same data repeatedly from slow global memory into GPU cores. 
 
 
Subroutine description Fortran 

[ms] 
Single 
profile 
CUDA C 
[ms] 

Speedup  Multi 
profile 
CUDA C 
[ms] 

Speedup 

Calculates optical 
depths from every 
pressure level to 
space, transmittances 
from each level to 
space and 
transmittances from 
surface to space 

0.141 0.412 0.34 0.00276 51.09 

Integration of radiative 
transfer equation, 
convert atmospheric 
temperatures to 
Planck functions and 
radiances to 
brightness 
temperatures. 

0.137 0.132 1.04 0.00063 209.52 

Table 1. Processing times for Fortran subroutines, single-profile CUDA C kennels and 
multi-profile CUDA C kernels for AMSU-A. 
 
In Table 2, similar processing time results are shows for IASI as were presented in Table 1 
for AMSU-A. Although, both single profile and multi profile codes utilize all cores in IASI 
processing there is still a significant difference between the two versions. As explained 
earlier, this is due to the fact that the data that needs to be transferred from global memory 
to cores is reduced in multi profile processing. 
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Subroutine description Fortran 

[ms] 
Single 
profile 
CUDA C 
[ms] 

Speedup  Multi profile 
CUDA C 
[ms] 

Speedup 

Calculates optical 
depths from every 
pressure level to 
space, transmittances 
from each level to 
space and 
transmittances from 
surface to space 

110.32 0.75500 146 0.291 379 

Integration of radiative 
transfer equation, 
convert atmospheric 
temperatures to 
Planck functions and 
radiances to 
brightness 
temperatures. 

75.31 0.151 499 0.096 785 

Table 2. Processing times for Fortran subroutines, single-profile CUDA C kennels and 
multi-profile CUDA C kernels for IASI. 
 
 

 
average 

time [ms] 
speedup 

AMSU-A 0.638 0.4 

IASI 1.191 156.9 

Table 3. Processing times for 1 profile on a GPU for both AMSU-A and IASI. 
 
In Table 3, total computation time results for single profile processing are shown both for 
AMSU-A and IASI. The results are as the individual kernel results indicated before. A 
single-profile AMSU-A is slower on GPU and on CPU and IASI in significantly faster on 
GPU. 
 
Concurrent GPU kernel execution and data transfer from CPU to GPU can be managed 
through streams. A stream is a sequence of commands that execute in order. By 
overlapping device computation with asynchronous data transfers and host computation it 
is possible to reduce the total execution time. Streams are logically independent queues of 
operations to be executed on GPUs. Hardware maps the commands on streams to an 
engine to execute kernels and an engine to perform memory transfers. A diagram 
depicting the execution timeline of the radiative transfer model is shown in Figure 2. The 
five different operations are colored in different colors. Vertical direction in Figure 2 
represents time. 
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Predictors are first computed on a CPU and then they are transferred from host to device 
using a copy engine on a GPU. After the memory transfer CUDA kernels are launched 
asynchronously. Finally, results of CUDA kernels are transferred back to device. When the 
process is repeated several times only the initial predictors, host to device memory 
transfer and final device to host memory transfer are the latency that contributes to the 
total time. 

 
 

Figure 2.  Execution timeline for five CUDA kernel executions. The five different 
operations are colored in different colors. 
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Figures 3 and 4 show average processing times for a single profile. As shown in Figure 2 
the initial predictions and the final memory transfer from device to host are not overlapping 
the other computation. Thus, when the number of calls to CUDA kernels is high enough 
their contribution to the overall processing time becomes insignificant.  
 

 
Figure 3. Average processing times [ms] for 1 profile of AMSU-A on a GPU as a function 
of the number of call to multi-profile CUDA kernels. 
 
 

.  

Figure 4. Processing times [ms] for 1 profile of IASI on a GPU as a function of the number 
of call to multi-profile CUDA kernels. 
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In Figure 5, schematic visualization of running RTTOV on 4 GPUs is illustrated. There are 
five threads controlling the four GPUs. The first thread is a master thread, which controls 
the slave threads. Each GPU must be controlled by a different CPU thread. Allocation of 
portable pinned memory is performed in the thread number 1. For pinned memory GPU 
can use direct memory access to copy data from or to host. Using portable pinned memory 
all thread see pinned memory. Between barriers 4 and 2 thread number 1 performs the 
pinned memory allocation for global memory. Barrier synchronizes participating threads. 
Computation begins after barrier 1. When all the threads have reached barrier 3 the 
computation is finished. Resources are released after barrier 5 is reached. 
 

 
Figure 5. Schematic visualization of RTTOV running on multiple GPUs.  

 

Figure 6 shows the scaling of AMSU-A for 1 to 4 GPUs in the form of the speedup 
compared to the original Fortran code. Speedup is the average GPU processing time to 
process 50 calls to CUDA kernels compared to the time to run the original Fortran code. 
Four GPUs take 230.26 ms to process the profiles, which is 53% longer than 149.62 ms to 
process the same amount of profiles per GPU on a single GPU.  
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Figure 6. Speedups for AMSU-A for 1 to 4 GPUs. 
 
 

 
Figure 7. Speedups for IASI for 1 to 4 GPUs. 
 
 
Figure 7 shows the scaling of IASI for 1 to 4 GPUs. Using four GPUs per profile 
processing time drops from 0.405 ms to 0.104 ms for a single GPU. Thus, four GPUs have 
3.89x higher speedup that 1 GPU. Therefore, IASI is much closer to the ideal linear 
speedup than AMSU-A. The reasons for that will be analyzed next. 
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 AMSU-A IASI 

CPU to GPU 9112 76676 
GPU to CPU 12032 136192 

Table 4. The amount of data in bytes that is transferred between CPU and GPU per 
profile. 
 
By dividing total amount of memory transfers in Table 4 by the per profile processing times 
we get the number of transferred bytes in a second. The resulting global memory 
throughput in MB/s for AMSU-A and IASI are shown in Figure 8. Theoretical PCI express 
2.0 bandwidth is 8.0 GB/s (4.0 GB/s per direction). In practice, measuring throughput using 
NVIDIA's bandwidth test program memory throughputs of 3094.5 MB/s and 3162.5 MB/s 
for host to device and device to host transfers was measured. Based on the above, 
AMSU-A is limited by the PCI express bus throughput from GPU to CPU. On the other 
hand, the measured global memory overall throughput for IASI CUDA kernels is 80 GB/s. 
Thus, IASI is limited by global memory throughput. 
 

 
Figure 8. Global memory throughput in MB/s for AMSU-A and IASI for both transfer 
directions. 
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Figure 9.  Execution timeline for five CUDA kernel executions. The five different 
operations are colored in different colors. 

 
A diagram depicting the execution timeline of the Pure GPU AMSU-A is shown in Figure 9. 
Vertical direction in Figure 9 represents time. In this case CUDA kernels also include 
predictor kernel, which is computer before the other kernels. This arrangement reduced 
the amount of transferred data from CPU to GPU. Thus, reducing the execution time. 
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Number of GPUs Execution time for 1 profile [ms] Speedup 

1 0.00513 56x 
2 0.00276 104x 
3 0.00236 122x 
4 0.00229 125x 

Table 5. Execution time for pure GPU AMSU-A. 
 
 

 
Figure 10. Speedups for CPU/GPU-hybrid and pure-GPU AMSU-A. 
 

In Table 5, execution times and speedups for pure-GPU AMSU-A are depicted. Figure 10 
compares speedups for CPU/GPU-hybrid AMSU-A and pure-GPU AMSU-A. It can be 
seen that version pure-GPU AMSU-A is two times faster than AMSU-A CPU/GPU hybrid 
for 1 GPU. With 4 GPUs the speedup is reduced to 1.64x as pure-GPU AMSU-A becomes 
limited by the PCI express bus throughput from GPU to CPU. 
 
 
 

5. Conclusions 
 
GPU computing is more effective for a hyperspectral IASI sensor than AMSU-A sensor as 
IASI yields more computations per data transfer between host and device.  To compute 
one day's amount of 1,296,000 IASI spectra, the CPU code will take 2.8 days, whereas the 
multi-input 1-GPU and 4-GPU codes will take 8.75 and 2.25 minutes, respectively. 
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Annex: RTTOV-7 GPU Users Guide 

 
 
 
 

This documentation was developed within the context of the EUMETSAT Satellite 
Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation 
Agreement dated 10 February 2010, between the Space Science and Engineering Center 
(SSEC), University of Wisconsin-Madison, USA and the Met Office, UK, by one or more 
partners within the NWP SAF. The partner in the NWP SAF is the Met Office.  
Before attempting to use the RTTOV-7 GPU model the reader is advised to also read the 
RTTOV-7 Users Guide for an overview of the RTTOV-7 fast radiative transfer model and 
information about the Fortran implementation running on a CPU. This document shows 
how to install the RTTOV-7 fast radiative transfer model GPU code on a Linux platform 
and run it. 
 

1  Prerequisites 
 

In order to install RTTOV-7 GPU, a CUDA enabled graphics processor is required along 
with some related software, which are described below. 

 
1.1 CUDA enabled graphics processor 

Every NVIDIA GPU since the 2006 release of the GeForce 8800 GTX has been CUDA-
enabled. For a complete list a CUDA-enabled graphics processors consult NVIDIA website 
at http://www.nvidia.com/cuda. 

 
1.2  NVIDIA device driver 

Visit http://www.nvidia.com/cuda and click the "Download Drivers" link. Select the options 
that match the graphics card and operating system on which you plan to compile the code. 

 
1.3  CUDA development toolkit 

You can download the CUDA toolkit at 
http://developer.nvidia.com/object/gpucomputing.html. 

 
1.4  Standard C compiler for the host code 

Linux distributions ship with the GNU Compiler Collection (gcc) installed, which is used for 
compiling the host code. Also, Intel C++ Compiler (icc) can be used as a host compiler for 
CUDA 3.2 or higher. 

 

2 Test programs 
 

There are six Unix test scripts for running test programs. Each of the test scripts requires 
both associated input data files and radiative transfer coefficient files. The main directory 
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for those files is set in dir.sh file. The output of test programs run on user’s machines are 
print.dat and print.diff, which are the output of the test program and the difference between 
the CPU and GPU versions outputs, respectively. The CUDA C code consists of CUDA C 
kernels and C functions and top level test programs (tstrad.c and tstrad_multi.cu) for 
complete testing of the RTTOV subroutines. The first step is to compile the code and to 
make the executables using the makefile supplied.  

 

In order to compile the source code both NVIDIA device driver and CUDA development 
toolkit have to be installed (Sections 1.2 and 1.3). After installation, uncompress and 
expand the compressed tar file containing the source code:  
 
tar xvfz rttov7_gpu.tgz 

 

Next, change current directory to newly created rttov7_gpu directory:  
 
cd rttov7_gpu 

 

Type make and the code will compile and produce the following executables  
 

tstrad Processes a single IASI profile during one call to a CUDA kernel 
tstrad_multi Tests multi-profile GPU code that processes 9 IASI profiles 

during one call to a CUDA kernel. If the number of profiles is not 
a multiple of 9 then the residual profiles are computed using 
single-profile GPU code 

tstrad_multi_GPU Multi GPU version of the above 
tstrad_15 Processes a single AMSU-A profile during one call to a CUDA 

kernel 
tstrad_multi_15 Processes 300 IASI profiles during one call to a CUDA kernel If 

the number of profiles is not a multiple of 300 then the residual 
profiles are computed using single-profile GPU code 

tstrad_multi_GPU_15 Multi GPU version of the above 

  
The corresponding test scripts for running test programs are amsua.sh, amsua_multi.sh, 
amsua_multi_GPU.sh, iasi.sh, iasi_multi.sh and iasi_multi_GPU.sh. 
 
There also exists an experimental pure GPU version for AMSU-A, which is in compressed 
tar file named rttov7_pure_gpu.tgz. The above explanation for installation applies to it as 
well. However, there are only two test scripts for pure GPU AMSU-A:  amsua_multi.sh and 
amsua_multi_GPU.sh. 
 

3 Running RTTOV-7 GPU for your applications 
 

3.1  High level interface to RTTOV-7 GPU 

To run RTTOV-7 for a user’s application files tstrad.cu and tstrad_multi.cu can be used as 
a rough guide or template. Using a C pre-processor directive MULTI_GPU files 
tstrad_multi.cu and rttov_multi.cu illustrate how to initialize multiple GPUs and to call 
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CUDA kernels that compute RTTOV-7 forward model for multiple profiles. The number of 
GPUs is defined in file multiGPU.h using variable GPU_N. The input to function rttov is 
transferred using a struct TGPUplan, which has the following fields:  

 
 

data type variable name field description 
 * for arrays  

int thr_id Thread id 
int alloc_host_mem 1 for a thread that allocates host memory, 0 

otherwise 
int alloc_nprof Number of profiles the resuls are computed 
int device GPU device id 
float pangl Satellite local zenith angle (deg) 
float pangs Solar zenith angle at surface (deg) 
int ksurf Surface type index 
int knchpf The number of channels 
float *pav Atmospheric profile variables 
float *psav Surface air variables 
float *pssv Surface skin variables 
float *pcv Cloud variables 
float *pemis Surface emissivities 
float *prad Radiances (mw/cm-1/ster/sq.m) 
int lcloud Switch for cloud computation 
float *emc Emissivity model data 
float *cfm Mixed gas coeffs 
float *cfw Water vapour coeffs 
float *cfo Ozone coeffs 
int max_nprof Number of profiles the memory is allocated 
float *freq Channel frequencies in GHz 
int fmv_gas Number of active gases 
int sensor Sensor number 
float *tc1 Band correction coefficient: offset in K 
float *tc2 Band correction coefficient: slope in K 
float *bcon1 1st Planck function constant in mW/m**2/sr/cm**-4 
float *bcon2 2nd Planck function constant in K/cm**-1 
float *emcir Satellite and ir channel for surf 
float *wvnum Wavenumber in cm**-1 
int *mpol Polarization of each channel 
float *gamma_factor Gamma factor transmittance corrections 
float *xpres Standard pressure levels for transmittance 
float *dpres Intervals between standard pressure levels in mb 

 
Two global integer arrays of size GPU_N are also used as inputs for rttov_multi function. 
 
array name description 

global_nprof The number of profiles that are computed using a thread 
global_first_prof The id number of the first profile 
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First, initialize the input variables to rttov_multi function in your code. Next, one rttov_multi 
is executed on a thread in order to initialize the pinned host memory for input data for 
CUDA kernels (see below for description). After memory initialization, all the other threads 
running rttov_multi function are started. 
 
3.2  Low level interface to RTTOV-7 GPU 

In rttov_multi function, a call to a function prfin is made to set up profile-dependent 
variables for subsequent radiative transfer calculations by CUDA kernels, which are called 
from rttov. Input and outputs to CPU function prfin and CUDA functions are listed in 
Appendix A. After that, the following data is transfered for CUDA kernels from CPU to 
GPU:  

 
variable name description 

pemis Surface emissivities 
plandfastem Microwave surface emissivity coefficients 
debyeprof Functions of debye terms of profile for cloud calc 
xxm Func. of profile for mixed gas 
xxw ........... for water vapour 
xxo ........... for ozone 
xxc ........... for cloud liquid water 
temp Temperature profile in K 
fracps Fraction of std press level interval by which surface is 

above a predefined level 
fracpc Fraction of std press level interval by which cloud is above a 

predefined level 
ta Surface air temperature in K 
ts Surface skin temperature in K 
cldf Fractional (ir) cloud cover 
nlevsf Index of nearest std press level at/below surface 
nlevcd Index of nearest std press level at/below cloud top  

  
Next, the following five CUDA kernels are executed:  
opdep_multi Calculates optical depths from every pressure level to space, 

transmittances from each level to space and transmittances 
from surface to space 

plncx Converts atmospheric temperatures to Planck functions 
emiss Sets up surface emissivity for radiative transfer calculation 
rtint Integration of radiative transfer equation 
brigv Converts radiances to brightness temperatures 
  
Output from GPU to CPU:  
variable name description 

prad Radiances (mw/cm-1/ster/sq.m) 
ptb Brightness temperatures (K) 
rado Overcast radiance at given cloud top in mw/m2/sr/cm-1 
tausfc Transmittance from surface 
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tau Transmittance from each standard pressure level 1 
  
3.3  Multi-profile CUDA kernels on 1 GPU 

Without MULTI_GPU pre-processor directive tstrad_multi.cu and rttov_multi.cu illustrate 
how to initialize a single GPU and to call CUDA kernels that compute RTTOV-7 forward 
model for multiple profiles using a single CUDA kernel call. In this case, the use of the 
routines is significantly simplified compared to multiple GPU case as there are no threads 
running on multiple CPU cores to worry about. 

 
3.4  Single-profile CUDA kernels on 1 GPU 

Files tstrad.cu and rttov.cu illustrate how to initialize a single GPU and to call CUDA 
kernels that compute RTTOV-7 forward model for a single profile. The input is similar to 
the multi-profile case above. 

 
4 Source code 

 

The source code of RTTOV-7 GPU consists of the following CUDA C and C files: 
 

tstrad.cu Main test program 
rttovcf.c Routine to read a RTTOV coefficient file 
rttov.cu Computes multi-channel level to space 

transmittances, top of atmosphere 
radiances and brightness temperatures 
for a profile 

prfin.c Sets up profile-dependent variables for 
subsequent radiative transfer calculations 
by other subroutines of rttov 

prslev.c Locate given pressures on array of fixed 
levels 

debye.c Sets up debye terms for radiative transfer 
calculations 

prftau.c Store profile variables for transmittance 
calc 

opdep.cu Calculates optical depths from every 
pressure level to space, transmittances 
from each level to space and 
transmittances from surface to space 

plncx.cu Converts atmospheric temperatures to 
Planck functions 

emiss.cu Sets up surface emissivity for radiative 
transfer calculation 

rtint.cu Integration of radiative transfer equation 
brigv.cu Converts radiances to brightness 

temperatures 

                                                           
1 AMSU-A only 
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The following three CUDA C files are kernels for both AMSU-A and IASI multi-profile 
versions. If a macro M15 is defined then AMSU-A versions are compiled. Otherwise, IASI 
versions are compiled. For multi-profile files if macro MULTI_GPU is defined then multi 
GPU versions are compiled. Otherwise, single GPU versions are compiled. For multi GPU 
version the number of GPUs and their ids are defined in tstrad_multi.cu using GPU_N and 
DEV variables. 

 
tstrad.cu Main test program for single-profile processing 
rttov_multi.cu Computes multi-channel level to space transmittances, top 

of atmosphere radiances and brightness temperatures for 
multiple-profiles. If macro USE_TIMER is defined then 
processing times are printed to stdout. 

tstrad_multi.cu Main test program for multi-profile processing. If macro 
MEASURE_TIME is defined then processing times are
printed to stdout 

  
Source file opdep_multi.cu is CUDA C file for IASI multi-profile version. These are also 
four CUDA kernels for AMSU-A multi-profile version: brigv_multi_15.cu, 
opdep_multi_15.cu,  plncx_multi_15.cu and rtint_multi_15.cu. 
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Appendix A: Parameters of RTTOV-7 GPU functions 

Input to prfin is the following:  
 

variable name description 

pav Atmospheric profile variables 
psav Surface air variables 
pssv Surface skin variables 
pcv Cloud variables (0-1) 
pemis Surface emissivities (0-1) 
knpf Number of profiles 
knchpf Number of channels 
pangl Satellite local zenith angle (deg) 
pangs Solar zenith angle at surface (deg) 
ksurf Surface type index 
ksat Satellite index 

  
Output for prfin is the following:  
xxm Functions of profile for mixed gas 
xxw ........... for water vapour 
xxo ........... for ozone 
xxc ........... for cloud liquid water 
debyeprof Functions of debye terms of profile for cloud calc 
nstype Surface type index; 1=sea, 0=land 2=ice 
xpath Secant of viewing path angle at surface 
snad2 Sine nadir angle squared 
cnad2 Cos nadir angle squared 
czen Cosine zenith angle 
czen2 Cos zenith angle squared 
szen2 Sine zenith angle squared 
nlevsf Index of nearest std press level at/below surface 
fracps Fraction of std press level interval by which surface is 

above level nlevsf 
surfw Surface wind-speed m/s 
nlevcd Index of nearest std press level at/below cloud top 
fracpc Fraction of std press level interval by which cloud is 

above level nlevcd 
ts Surface skin temperature in K 
temp Temperature profile in K 
wmix Specific humidity profile in ppmv 
ozon Ozone profile in ppmv 
cldw Cloud liquid water in kg/kg 
emis Surface emissivity (0-1) 
ta Surface air temperature in K 
cldf Fractional (ir) cloud cover 
plandfastem Fastem land microwave surface emissivity coefficients 
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Input to opdep_multi: 
knchpf Number of channels 
xxm Functions of profile for mixed gas 
xxw ........... for water vapour 
xxo ........... for ozone 
xxc ........... for cloud liquid water 
debyeprof Functions of debye terms of profile for cloud calc 
pitch Width of the allocated multi-dimensional arrays in bytes 
cfm Mixed gas coeffs 
cfw Water vapour coeffs 
cfo Ozone coeffs 
freq Channel frequencies in GHz 
gamma Gamma factor transmittance corrections 
njplev Number of pressure levels 
fmv_gas Number of active gases 
sensor Sensor number for each triplet 
nmwcldtop Upper level for lwp calcs 
nlevsf Index of nearest std press level at/below surface 
fracps Fraction of std press level interval by which surface is 

above level nlevsf 
htod_len Length of input data for a profile in floats 
dtoh_len Length of output data for a profile in floats 
  
Output from opdep_multi: 
opdp Optical depth from press level to space 
tau Transmittance from each standard pressure level (0-1) 
taufc Transmittance from surface (0-1) 
  
Input to plncx:  
ptemp Brightness temperatures 
knchpf Width in bytes of the allocated arrays 
tc1 Band correction coefficient: offset in K 
tc2 Band correction coefficient: slope in K/K 
bcon1 1st Planck function constant in mW/m**2/sr/cm**-4 
bcon2 2nd Planck function constant in K/cm**-1 
pitch Width of the allocated multi-dimensional arrays in bytes 
ptemp2 Brightness temperatures 
ptemp3 Brightness temperatures 
  
Output from plncx: 
b Planck function for temperatures profiles 
ba Planck functions surface air temp 
bs Planck functions surface skin temp 
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Input to emiss:  
knchpf Number of processed radiances 
tausfc Transmittances from surface to space (0-1) 
nstype Surface type index; 1=sea, 0=land 2=ice 
xpath Secant of viewing path angle at surface 
snad2 Sine nadir angle squared 
cnad2 Cos nadir angle squared 
czen Cosine zenith angle 
czen2 Cos zenith angle squared 
szen2 Sine zenith angle squared 
surfw Surface wind-speed m/s 
ts Surface skin temperature in K 
emis Surface emissivity (0-1) 
sensor Sensor number for each triplet 
freq Channel frequencies in GHz 
emcir Satellite and ir channel for surf emissivity model ssirem 
wvnum Wavenumber in cm**-1 
mpol Polarization of each channel 
emc Emissivity model data 
plandfastem Microwave surface emissivity coefficients 
pitch Width of the allocated multi-dimensional arrays in bytes 
  
Output from emiss: 
pems Surface emissivities (0-1) 
pref Surface reflectivities (0-1) 
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Input to rtint: 
ems Surface emissivities (0-1) 
refl Surface reflectivities (0-1) 
emis Surface emissivity (0-1) 
fast_emis 1 if emissivity was computed using fast in-place method, 0 

otherwise 
tau Transmittances from each level to space (0-1) 
tausfc Transmittances from surface to space (0-1) 
b Planck functions for temperatures profiles 
ba Planck functions for surface air temp 
bs Planck functions for surface skin temp 
nlevsf Index of nearest std press level at/below surface 
fracps Fraction of std press level interval by which surface is above 

a predefined level 
nlevcd Index of nearest std press level at/below cloud top 
fracpc Fraction of std press level interval by which cloud is above a 

predefined level 
pitch Width of the allocated multi-dimensional arrays in bytes 
cldf Fractional (ir) cloud cover 
tc1 Band correction coefficient: offset in K 
tc2 Band correction coefficient: slope in K 
bcon1 1st Planck function constant in mW/m**2/sr/cm**-4 
bcon2 2nd Planck function constant in K/cm**-1 
knchpf Number of channels 
lcloud Switch for cloud computation 
sensor Sensor number for each triplet 
njplev Number of pressure levels 
  
Output from rtint: 
prad Output array of radiances 
rado Overcast radiances for given cloud-top pressures 
bdt Stores upwelling radiation from atmosphere above each level 
bdtr Stores down-welling radiation at each level from atmosphere 

above 
ztcold Intermediate temperature array 
zbcold Intermediate temperature array 
  
Input to brigv: 
knchpf Number of channels 
prad Radiances 
tc1 Band correction coefficient: offset in K 
tc2 Band correction coefficient: slope in K 
bcon1 1st Planck function constant in mW/m**2/sr/cm**-4 
bcon2 2nd Planck function constant in K/cm**-1 
  
Output from brigv: 
ptb Brightness temperatures 
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Appendix B: CUDA enabled GPUs 
 

 

 

GPUs Cards Compute 

capability 

(version) 

G80 GeForce 8800GTX/Ultra/GTS, Tesla 

C/D/S870, FX4/5600, 360M 

1.0 

G86, G84, G98, 

G96, G96b, G94, 

G94b, G92, G92b 

GeForce 8400GS/GT, 8600GT/GTS, 

8800GT, 9600GT/GSO, 

9800GT/GTX/GX2, GTS 250, GT 

120/30, FX 4/570, 3/580, 17/18/3700, 

4700x2, 1xxM, 32/370M, 3/5/770M, 

16/17/27/28/36/37/3800M, 

NVS420/50 

1.1 

GT218, GT216, 

GT215 

GeForce 210, GT 220/40, FX380 LP, 

1800M, 370/380M, NVS 2/3100M 

1.2 

GT200, GT200b GTX 260/75/80/85, 295, Tesla 

C/M1060, S1070, CX, FX 3/4/5800 

1.3 

GF100, GF110 GTX 465, 470/80, Tesla C2050/70, 

S/M2050/70, Quadro 600,4/5/6000, 

Plex7000, 500M, GTX570, GTX580 

2.0 

GF108, GF106, 

GF104 

GT 420/30/40, GTS 450, GTX 460 2.1 

 


