
NWP SAF
Satellite Application Facility for Numerical Weather Prediction

Document NWPSAF-MO-VS-022

Version 1.4

29 September 2006

Incorporation of RTTOV-8 in the JCSDA CRTM

P.F.W. van Delst
Joint Center for Satellite Data Assimilation

and

R.W. Saunders
Met Office, UK

NWP SAF Visiting Scientist Report

Incorporation of RTTOV-8 in the JCSDA CRTM

P.F.W. van Delst1 and R.W. Saunders2

1Joint Center for Satellite Data Assimilation

NOAA/NWS/NCEP/EMC
Camp Springs, MD 20746

USA

2Met Office,
Fitzroy Rd

Exeter EX1 3PB
U.K.

This documentation was developed within the context of the EUMETSAT Satellite Application
Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement dated
25 November 1998, between EUMETSAT and The Met. Office, UK, by one or more partners within
the NWP SAF. The partners in the NWP SAF are The Met. Office, ECMWF, KNMI and Météo
France.

Copyright 2006, EUMETSAT, All Rights Reserved.

Change record
Version Date Author / changed by Remarks
1.0 13/09/2006 P. van Delst Initial draft
1.1 22/09/2006 R. Saunders Comments made
1.2 22/09/2006 P. van Delst Comment addressed. Recommendations for

further work updated. Other minor updates.
1.3 26/09/2006 P. van Delst Added RTTOV AtmAbsorption flowchart.
1.4 29/09/2006 P. van Delst Updated Jacobian plots.

 2

Incorporation of RTTOV-8 in the JCSDA CRTM

1. Introduction
Simulation of atmospheric radiative transfer involves a number of physical processes. The Community
Radiative Transfer Model (CRTM) is based upon a framework that is intended to allow independent
development of algorithms to model these different processes. The components of atmospheric
radiative transfer considered by the CRTM can be loosely divided into four main categories,

1. Absorption of radiation by the gaseous constituents of the atmosphere,
2. Absorption and scattering of radiation by clouds and aerosols,
3. Surface emission of radiation and surface interaction with downwelling atmospheric radiation,

and
4. Solution of the radiative transfer equation.

The CRTM framework was designed to allow for a relatively natural division of the software
implementation of the above categories into modular entities so that as new or updated algorithms are
developed, they can be easily integrated. This work focuses on modification of the atmospheric
absorption component of the CRTM (hereafter referred to as AtmAbsorption), currently an
implementation of OPTRAN, to incorporate the RTTOV equivalent into the CRTM framework. The
other CRTM components – scattering, surface optics, and the radiative transfer itself – remain
unchanged. The modifications are applied to all the CRTM forward(FWD), tangent-linear(TL),
adjoint(AD), and K-matrix(K) models.

2. Software Modifications
The first goal was to continue the work begun by Roger Saunders in his visit to the JCSDA and get the
forward model component working. His report is available as a NWPSAF visiting scientist report.
However, to facilitate the later modifications for the TL, AD, and K models, it was decided to modify
the CRTM interface itself to allow for sensor-based, rather than channel-based, processing.

2.1 CRTM code changes

Channel- to Sensor-based processing
For historical reasons, to compute satellite sensor radiances or Jacobians the current operational
CRTM does not distinguish between channels from different sensors. Prior to use in the CRTM, the
spectral (SpcCoeff) and optical depth (TauCoeff) coefficient data for each required sensor are pre-
processed to concatenate all the individual sensor datafiles into one datafile per coefficient type (see
Figure 1a). These datafiles are then used to initialise the CRTM by loading the concatenated SpcCoeff
and TauCoeff data into the scalar shared data structures SC and TC (see Figure 1b) which are used
internally in the CRTM to store these coefficient data. The various CRTM models then simply loop
over the number of channels without distinguishing to which sensor any particular channel belongs.
This is hereafter referred to as channel-based processing.

To aid in the incorporation of other AtmAbsorption algorithms in the CRTM (not just RTTOV’s
algorithm) the initialisation phase has been modified to use sensor-based processing. This eliminates
the need to concatenate the separate sensor SpcCoeff and TauCoeff files prior to initialisation – the
various datafiles can be read in as is (see Figure 2). Several significant changes have been made to the
CRTM framework to implement the sensor-based processing,

• Spectral (SpcCoeff) and optical depth (TauCoeff) shared data coefficient structures SC and TC
were changed from scalar structures to rank-1 (of size nSensors) structure arrays.

• The CRTM initialisation function was modified to accept a list of sensors and from that list
determine the required SpcCoeff and TauCoeff datafiles to read and load into their respective
shared data structure arrays. The output ChannelInfo structure – which contains indexing
information for specific sensors/channels into the various shared data structure arrays – was
changed from a scalar argument to rank-1 (of size nSensors).

 3

• The main CRTM model functions (forward, tangent-linear, adjoint, and K-matrix) were
modified

o The interfaces were altered to accept the rank-1 ChannelInfo output from the
initialisation function.

o The internal channel loop was altered to loop over sensors and within that to loop over
the channels for that sensor only.

o The call interface to every internal routine interface was altered to accept both a
sensor index (an index into a particular element of the shared data coefficient structure
arrays SC and TC) and a channel index (an index into the component channel data
within that structure element, e.g. SC(sensor index)%Frequency(channel index)).

• All the internal routine interfaces (for AtmAbsorption, CloudScatter, AerosolScatter,
SfcOptics, and RTSolution computations) and code itself were modified to accept both a
sensor index and channel index.

These generic changes to the trunk CRTM code made the subsequent integration of RTTOV into the
CRTM framework much easier to implement. The RTTOV specific CRTM code changes are
discussed in the next section.

Read SpcCoeff
for current sensor

SpcCoeff to O/P
Append current sensor

Read TauCoeff
for current sensor

TauCoeff to O/P
Append current sensor

Another
sensor?

Concatenation
complete

concatenation
Begin coefficient

Write concatenated
SpcCoeff file

Write concatenated
TauCoeff file

Yes

No

Read concatenated
SpcCoeff into SC

Read concatenated
TauCoeff into TC

Initialisation
complete

Begin CRTM
initialisation

Current CRTM initialisation with
concatenated coefficientsCurrent coefficient concatenation preprocessing

(a) (b)
Figure 1. Current CRTM initialisation methodology for channel-based processing. (a) Separate sensor SpcCoeff and

TauCoeff datafiles are concatenated into single SpcCoeff and TauCoeff datafiles. (b) The concatenated
datafiles are used to initialise the CRTM.

 4

initialisation
Begin CRTM

counter, n
Increment sensor

Read SpcCoeff for
current sensor into SC(n)

Read TauCoeff for
current sensor into TC(n)

Another
sensor?

Yes

No

Initialisation
complete

Figure 2. New CRTM initialisation methodology for sensor-based processing.

RTTOV specific CRTM source code changes
Before detailing the specific changes to the CRTM to accommodate the RTTOV AtmAbsorption
algorithm, a fundamental difference between the RTTOV and CRTM design must be discussed – how
the two codes process sensor channels.

The CRTM was designed to process a single channel at a time. The main reason behind this design
decision was to minimise the memory footprint of the CRTM when cloud and aerosol scattering was
included in the computation. For highly scattering atmospheres, the memory required to hold all the
intermediate forward variables (e.g. phase functions) for use in K-matrix computations would become
prohibitive for the many channels case. Thus, each frequency dependent component of the CRTM is
designed for processing a single channel per call. RTTOV, however, was designed to process many
channels at once. Thus, to accommodate the use of the RTTOV AtmAbsorption algorithm, the
requisite calls were moved out of the channel loop. This is discussed further below.

TauCoeff loading.
The CRTM module modified to accommodate the RTTOV coefficient file reading was
CRTM_TauCoeff.f90. This module contains the shared data TauCoeff structure holding the
AtmAbsorption algorithm coefficients and was modified to call the RTTOV-specific TauCoeff load
routines.

CRTM to RTTOV data mapping
A module, RTTOV_Utility.f90, was created to contain procedures required to map between
CRTM and RTTOV specific quantities. Currently the CRTM↔RTTOV Utility procedures include

• CRTM_to_RTTOV_SensorID. A function to convert the CRTM sensor ID string to the
RTTOV sensor ID triplet.

• CRTM_to_RTTOV_Profile. Functions (forward, tangent-linear, and adjoint) to convert
between the CRTM input structures (Atmosphere, Surface, and GeometryInfo) and the
RTTOV profile structure.

AtmAbsorption
The CRTM_AtmAbsorption.f90 module was rewritten to accommodate the RTTOV algorithm,
basically replacing the compactOPTRAN code with the calls to the various required RTTOV routines.
While this rewrite was not a trivial exercise, the CRTM was designed with the idea that each
component module would simply contain wrappers to provided code/algorithms. The main
impediment to a “simple” integration of the RTTOV AtmAbsorption algorithm in the CRTM is the
multi- versus single-channel processing issue discussed above.

 5

The flowcharts in Figure 3 indicate the changes made to the CRTM forward model framework to
accommodate the RTTOV AtmAbsorption code. The current CRTM forward model (Figure 3a)
computes the AtmAbsorption predictors and then enters the sensor/channel loops computing the
AtmAbsorption optical depth a channel at a time. For RTTOV integration, the AtmAbsorption
predictor and all-channel optical depth computation were combined within the
CRTM_AtmAbsorption.f90 module procedure and the call placed outside the sensor/channel
loops.

Current CRTM Forward Model

(a)

Any
clouds?

Any
aerosols?

Compute CloudScatter
optical properties

Compute AerosolScatter
optical properties

Perform radiative
transfer

Compute SfcOptics
at stream angles

Compute stream
angles

RTSolution

Combine AtmAbsorption,
CloudScatter and

AerosolScatter

Another
channel?

Another
sensor?

Forward Model
complete

Begin
Forward Model

Compute
surface temperature

Begin
Forward Model

Any
clouds?

Any
aerosols?

Compute CloudScatter
optical properties

Compute AerosolScatter
optical properties

Perform radiative
transfer

Compute SfcOptics
at stream angles

Compute stream
angles

RTSolution

Combine AtmAbsorption,
CloudScatter and

AerosolScatter

Another
channel?

Another
sensor?

Forward Model
complete

Yes

Yes

No

No

Yes

Yes

No

No

Compute
surface temperature

CRTM Forward Model with
RTTOV AtmAbsorption

(b)

S
en

so
r

ch
an

ne
l l

oo
p

S
en

so
r

lo
op

Yes

Yes

No

No

Yes

Yes

No

No

Compute AtmAbsorption

Compute AtmAbsorption
optical depth

predictors

AtmAbsorption for
Compute RTTOV

all sensors/channels

S
en

so
r

lo
op

S
en

so
r

ch
an

ne
l l

oo
p

Figure 3. (a) Flowchart of the current CRTM Forward Model highlighting the AtmAbsorption components. (b)

Flowchart of the CRTM Forward Model with the RTTOV AtmAbsorption. In this case all sensor/channel
AtmAbsorption computations are performed outside the main sensor/channel loop.

The same procedure was followed for the tangent-linear and adjoint models also. For the K-matrix
model, some additional channel looping was required in the RTTOV integration. The CRTM
computes the sensor FOV surface skin temperature as an average of the temperatures for each surface

 6

type (land, water, snow, and ice) weighted by the percentage coverage of each type in the FOV
specified by the user. In the CRTM K-matrix model, the adjoint form of this averaging lies within the
sensor/channel loop. However with the RTTOV AtmAbsorption because all channels are processed at
once the sensor/channel loop needs to be “restarted” for the K-matrix surface temperature computation.
This is shown schematically in Figure 4. A flowchart of the RTTOV library calls made in the forward
and K-matrix RTTOV-based AtmAbsorption code is shown in figure 5.

Begin
K−Matrix Model

Any
clouds?

Yes

No

CloudScatter
Compute adjoint

Any
aerosols?

Yes

No

Compute adjoint
AerosolScatter

CloudScatter and
Adjoint AtmAbsorption,

AerosolScatter combine

Compute stream
angles

RTSolution adjoint

radiative transfer
Perform adjoint

Compute adjoint
SfcOptics

AtmAbsorption for
all sensors/channels

RTTOV K−Matrix

surface temperature
Compute adjoint

Another
channel?

Yes

No

Another
sensor?

Yes

No

Any
clouds?

Yes

No

CloudScatter
Compute adjoint

Any
aerosols?

Yes

No

Compute adjoint
AerosolScatter

CloudScatter and
Adjoint AtmAbsorption,

AerosolScatter combine

Compute stream
angles

RTSolution adjoint

radiative transfer
Perform adjoint

Compute adjoint
SfcOptics

AtmAbsorption
Compute adjoint

Compute adjoint
predictors

surface temperature
Compute adjoint

Another
channel?

Yes

No

Another
sensor?

Yes

No

Begin
K−Matrix Model

K−Matrix Model
complete

K−Matrix Model
complete

CRTM K−Matrix Model with
RTTOV AtmAbsorption

(b)

Current CRTM K−Matrix Model

(a)

S
en

so
r

ch
an

ne
l l

oo
p

S
en

so
r

lo
op

S
en

so
r

ch
an

ne
l l

oo
p

S
en

so
r

lo
op

Yes

No

Another
channel/
sensor?

Figure 4. (a) Flowchart of the current CRTM K-Matrix Model indicating the AtmAbsorption and surface temperature

calculation components. (b) Flowchart of the CRTM K-Matrix Model with the RTTOV AtmAbsorption. In
this case all sensor/channel AtmAbsorption computations are performed outside the main sensor/channel loop
and an additional sensor/channel loop is required for the adjoint surface temperature calculation.

 7

Convert CRTM profile
to RTTOV profile

Begin
K−Matrix AtmAbsorption

Load RTTOV optical
depth into CRTM

AtmAbsorption structure

Load CRTM adjoint
AtmAbsorption into RTTOV

adjoint optical depth

Another
channel?

Yes

No

RTTOV
sensor coeff

version?

Call
rttov_setpredictors_8_k

Another
sensor?

Another
channel?

CRTM K−Matrix AtmAbsorption
using RTTOV calls

K−Matrix AtmAbsorption
complete

CRTM Forward AtmAbsorption
using RTTOV calls

(a)

Another
sensor?

Forward AtmAbsorption
complete

Begin
Forward AtmAbsorption

Convert CRTM profile
to RTTOV profile

Call
rttov_profaux

Call
rttov_transmit

RTTOV
sensor coeff

version?

Call Call
rttov_setpredictors rttov_setpredictors_8

v7 v8

Load RTTOV optical
depth into CRTM

AtmAbsorption structure

Another
channel?

Yes

No

Call
rttov_setgeometry

Yes

No

Call

Initialise sensor/channel
dependent arrays

rttov_checkinput

Convert RTTOV adjoint
profile into CRTM

adjoint profile

Call
rttov_setpredictors_k

Call

Initialise sensor/channel
dependent arrays

rttov_checkinput

Perform Forward
calculations

Call
rttov_transmit_k

v7 v8

Call
rttov_profaux_k

No

Yes

No

Yes

(b)
Figure 5. Flowchart of the CRTM AtmAbsorption code using with RTTOV library procedure calls. (a) Forward model.

(b) K-Matrix model.

 8

2.2 RTTOV code changes
The CRTM framework and AtmAbsorption components were designed for inputs of layer quantities
(temperature, water vapour amount, ozone amount) that are supplied within the GDAS. RTTOV,
however, requires the user to input level-based quantities. In the RTTOV predictor computation
routines, these data are averaged across levels to produce layer quantities which are then used in the
RTTOV fast transmittance computation. To use CRTM inputs in the RTTOV calculations, this level-
averaging had to be removed. The effected RTTOV routines are,

• Forward model
o rttov_setpredictors.F90
o rttov_setpredictors_8.F90

• K-Matrix model
o rttov_setpredictors_k.F90
o rttov_setpredictors_8_k.F90

(The tangent-linear and adjoint routines have not yet been changed.)

The forward model changes simply consist of removing the atmospheric state variable averaging code
and replacing it with a straight copy of the atmospheric profile inputs into local variables (see Figure
6), and the K-matrix code was generated from those changes (see Figure 7).

Averaging code…
t(1) = prof%t(1)
t(2:prof%nlevels) = (prof%t(1:prof%nlevels-1) + prof%t(2:prof%nlevels))/2._jprb

w(1) = prof%q(1)
w(2:prof%nlevels) = (prof%q(1:prof%nlevels-1) + prof%q(2:prof%nlevels))/2._jprb

If (prof%ozone_Data .And. coef%nozone>0) Then
 o(1) = prof%o3(1)
 o(2:prof%nlevels) = (prof%o3(1:prof%nlevels-1) + prof%o3(2:prof%nlevels))/2._jprb
End If
Replaced with direct copy code…
t(:) = prof%t(:)
w(:) = prof%q(:)
If (prof%ozone_Data .And. coef%nozone>0) Then
 o(:) = prof%o3(:)
End If

Figure 6. Replacement of level averaging code in rttov_setpredictors.F90. Similar changes for
rttov_setpredictors_8.F90

 9

Averaging K-Matrix code
If(prof%ozone_Data .And. coef%nozone>0)Then
 prof_k%o3(1:prof_k%nlevels-1) = prof_k%o3(1:prof_k%nlevels-1) +&
 0.5_JPRB*o_k(2:prof_k%nlevels,i)
 prof_k%o3(2:prof_k%nlevels) = prof_k%o3(2:prof_k%nlevels) +&
 & 0.5_JPRB *o_k(2 : prof_k % nlevels, i)
 prof_k%o3(1) = prof_k%o3(1) + o_k(1,i)
End If

prof_k%q(1:prof_k%nlevels-1) = prof_k%q(1:prof_k%nlevels-1) +&
 0.5_JPRB*w_k(2:prof_k%nlevels,i)
prof_k%q(2:prof_k%nlevels) = prof_k%q(2:prof_k%nlevels) +&
 0.5_JPRB*w_k(2:prof_k%nlevels,i)
prof_k%q(1) = prof_k%q(1)+w_k(1,i)

prof_k%t(1:prof_k%nlevels-1) = prof_k%t(1:prof_k%nlevels-1) +&
 0.5_JPRB*t_k(2:prof_k%nlevels,i)
prof_k%t(2:prof_k%nlevels) = prof_k%t(2:prof_k%nlevels) +&
 0.5_JPRB*t_k(2:prof_k%nlevels,i)
prof_k%t(1) = prof_k%t(1) + t_k(1,i)
Replaced with direct copy K-Matrix code
If(prof%ozone_Data .And. coef%nozone>0)Then
 prof_k%o3(1:prof_k%nlevels) = o_k(1:prof_k%nlevels,i)
End If
prof_k%q(1:prof_k%nlevels) = w_k(1:prof_k%nlevels,i)
prof_k%t(1:prof_k%nlevels) = t_k(1:prof_k%nlevels,i)

Figure 7. Replacement of K-matrix level averaging code in rttov_setpredictors_k.F90. Similar changes for
rttov_setpredictors_8_k.F90

3. Results

3. 1 Forward model
Brightness temperatures for the NOAA-16 HIRS/3 and selected channels of Aqua AIRS (see Table 1)
were computed using both the CompactOPTRAN and RTTOV AtmAbsorption algorithms in the
CRTM. The diverse 52-profile dataset sampled from ECMWF 60-level model fields1 and interpolated
to the AIRS 100-layers was used as input to the calculations. The RTTOV coefficients used were also
at the same layering to avoid wrapping in any interpolation errors into the results. Both clear sky and
cloudy calculations were performed but only the clear sky results are shown here so that any
AtmAbsorption differences are not masked by cloud absorption/scattering.

AIRS
channel

Frequency
(cm-1)

AIRS
channel

Frequency
(cm-1)

AIRS
channel

Frequency
(cm-1)

AIRS
channel

Frequency
(cm-1)

71 666.7 787 917.2 1449 1330.8 1917 2229.3
77 668.2 1021 1009.2 1627 1427.1 1958 2268.7

305 737.1 1090 1040.1 1766 1544.3 1995 2305.5
453 793.1 1142 1074.3 1794 1563.5 2107 2385.9
672 871.2 1437 1323.8 1812 1576.1 2197 2500.3

Table 1. AIRS channels used for CRTM CompactOPTRAN/RTTOV integration comparisons.

The average and RMS differences between the calculated CRTM brightness temperatures using the
CompactOPTRAN and RTTOV AtmAbsorption algorithms for NOAA-16 HIRS/3 and Aqua AIRS
are shown in figures 8 and 9 respectively both as a function of sensor channel and ECMWF profile.
For HIRS, the average difference fluctuates about zero and the RMS differences are at the 0.2K level.
For AIRS, the average difference (as well as the min/max differences) as a function of profile indicates
a positive bias of about 0.1K, with the RMS differences being around the 0.3-0.4K. This result for
AIRS is not entirely unexpected as the water vapour continuum component of CompactOPTRAN is
not optimal in the longwave IR window regions with an approximately 0.2-0.25K RMS error between
absorption lines for the dependent profile set.

1 See Chevallier,F., Dec.2001, “Sampled databases of 60-level atmospheric profiles from the ECMWF analyses”,
EUMETSAT/ECMWF SAF programme, Research Report No. 4.

 10

 By HIRS Channel By ECMWF Profile

Figure 8. Average (top) and RMS (bottom) brightness temperature differences for the NOAA16 HIRS/3 instrument
between using CompactOPTRAN and RTTOV as the AtmAbsorption algorithm in the CRTM. The left panel
shows the differences averaged over all profiles as a function of channel, and the right panel shows the
differences averaged over all channels as a function of the ECMWF profile.

 s
 By AIRS Channel By ECMWF Profile

Figure 9. Average (top) and RMS (bottom) brightness temperature differences for selected channels of the Aqua AIRS
instrument between using CompactOPTRAN and RTTOV as the AtmAbsorption algorithm in the CRTM. The
left panel shows the differences averaged over all profiles as a function of channel, and the right panel shows
the differences averaged over all channels as a function of the ECMWF profile.

 11

3.2 K-Matrix model
Similarly to the forward model test, the CRTM K-Matrix model was run with the CompactOPTRAN
and RTTOV AtmAbsorption algorithms for both the NOAA-16 HIRS/3 and Aqua AIRS. A
comparison of temperature, water vapour and ozone Jacobians for selected sensor channels and
ECMWF profiles are shown in Figure 10. A quantitative comparison of the Jacobians is beyond the
scope of this work, but these initial results are very encouraging. In general, the comparison of the
temperature Jacobians is very good. Water vapour and ozone Jacobian comparisons are quite good for
strongly absorbing channels, and poorer for weakly absorbing channels. For the stronger absorption
channels, the shapes of the Jacobians tend to be well matched even if the magnitudes may not be. One
interesting thing that was noticed in comparing the Jacobian profiles is that there seems to be a strong
correlation between the shapes of the water vapour and ozone Jacobians. The CompactOPTRAN-
based CRTM exhibits this feature more prominently, but the RTTOV-based CRTM results also
indicate a similar behaviour. Also, while the CompactOPTRAN algorithm will always produce
smoother Jacobians than RTTOV, it should be explicitly noted that the Jacobian comparisons shown
here are relative – that is, we have not compared them to line-by-line model Jacobians so no
determination should be made as to the correctness of the Jacobians based on how well behaved they
may be in the vertical.

 12

 NOAA-16 HIRS/3 Aqua AIRS
Figure 10. Temperature (top), water vapour (middle) and ozone (bottom) Jacobian profile comparisons between using

CompactOPTRAN and RTTOV as the AtmAbsorption algorithm in the CRTM. The left panel of plots is for
channel 7 of NOAA-16 HIRS3 for ECMWF profile #4 and the right panel of plots is for channel 305 of Aqua
AIRS for ECMWF profile #31.

 13

4. Summary of RTTOV Integration and Recommendations
The work described here was undertaken during an NWP SAF visiting scientist mission from the
JCSDA to the MetOffice by Paul van Delst – a reciprocal visit to continue the work begun by Roger
Saunders when he visited the JCSDA in April/May 2006. The original proposal was to integrate the
tangent-linear, adjoint and K-matrix forms of RTTOV into the equivalent CRTM models and this was
achieved – with, in the author’s opinion, quite remarkable results for a first attempt.

One of the current goals of the CRTM is to allow simultaneous integration of different AtmAbsorption
algorithms with the current emphasis on CompactOPTRAN and SARTA (the official AIRS RT
model). To achieve this for the RTTOV AtmAbsorption algorithm, the previously discussed issue of
how the CRTM and RTTOV process channels needs to be addressed. Due to the RTTOV requirement
to process multiple channels per RTTOV call, the implementation of the RTTOV AtmAbsorption
algorithm described in this report does not mesh easily with the design of the CRTM. It will also not
allow for the more generic simultaneous multiple-algorithm approach of AtmAbsorption calculations
within the CRTM. While RTTOV can process single channels at a time, it was not designed for that
type of usage and the efficiency of this sort of implementation is questionable. A test of this sort of
integration is recommended to determine the feasibility of the approach.

The integration of RTTOV in the CRTM provides the first opportunity to compare two current
AtmAbsorption algorithms within an assimilation environment. This comparison would involve both
the comparison of forward model results, i.e. comparing differences between calculation and
observations for the two AtmAbsorption algorithms, but, more importantly, allow for the quantitative
comparison of the impact of the different Jacobians in an assimilation system. As the K-matrix results
of Figure 9 show, even though the agreement between the two approaches is quite good, there are still
significant differences (in both magnitude and shape) between the Jacobians. Because the CRTM is
already integrated into the GSI, this work would need to be carried out at the JCSDA and require
additional resources.

5. Comments on RTTOV-87 code
The remaining recommendations relate to the RTTOV code implementation.

• Removal of array references in source code simply to document that a particular variable is an
array, that is using the notation “x(:)” to indicate that the variable “x” is an array. While for
most cases the use of “x(:)” as a euphemism for “x” typically has no deleterious side effects,
they are not the same thing. The former is an array slice and the latter is not.

• Implementation of allocation and destruction procedures for the RTTOV derived data types.
Rather than have a user explicitly allocate and deallocate the many components of various
RTTOV structures (e.g. profile structure, auxiliary profile structure, transmittance structure,
etc), helper procedures should be provided to perform this function. This will make user’s
code , and internal RTTOV code, much cleaner and easier to read. In addition – and more
importantly – if and when structure components are added or deleted the code developer will
only have to modify the helper procedures to ensure all structure components are correctly
allocated and deallocation (in addition to any changes made where that structure component is
actually used).

• Standardisation of argument order. It was noticed that some RTTOV routines have similar
arguments (e.g. the channel and polarisation arguments) in opposite order.

• Consider the use of modules rather than separate interface bodies to define explicit interfaces
for procedures. I realise this is a major change and does clash with current operational
requirements (at ECMWF), but the current scenario restricts RTTOV development to only
those groups who have access to the tools to automatically generate the required interface
bodies. RTTOV is not that large a package that compilation cascade is an issue. In the context
of use within a larger body of code this might not be true, but in that case, isn’t RTTOV
compiled separately into a library and linked in?

• This relates to the previous point. Definition of structures and all their helper functions (e.g.
allocate, destroy, assign, test, etc) in their own modules. Currently the RTTOV data types are

 14

all defined in a single module. Unit testing of code is much less complicated when the various
components are encapsulated and loosely coupled. It also makes code maintenance more
straightforward as developers modifying a particular derived data type definition (and any
associated methods) will be less likely to impact other derived type definitions (and their
associated methods).

